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Abstract
In this paper, I address the question: who is the individual that exerts

the greatest negative influence on the classroom learning environment? To
answer this I invoke the key player model from network economics and use
self-reported friendship data in order to solve the methodological problems
associated with identifying and estimating peer effects. I overcome the issue
of endogenous group formation by using the control function approach where
I simultaneously estimate network formation and outcomes. The results
show that the typical key player scores well on language and cognitive ability
tests and is not more likely to be a boy than a girl. I also find evidence that
removing the key player has a significantly larger effect on aggregate disrup-
tiveness in a network than removing the most disruptive individual implying
policy aimed at the most active individual could be inadequate. Finally, I
find that the average model fits the data best suggesting group-based policies
should be more effective than policies aimed at specific individuals.
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1 Introduction
In this paper, I address the question of how disruptive behavior spreads in a class-
room. More specifically, I ask: who is the individual that exerts the greatest negative
influence on the classroom learning environment? In a world of competing ends and
scarce means, this is a question of potentially great relevance namely, if aggre-
gate outcomes can be improved by focusing existing resources on a small number of
disruptive peers.

To answer this I invoke the key player model from network economics (Calvó-
Armengol & Zenou 2004, Ballester et al. 2006, 2010). Based on a set of behavioral
assumptions, this model predicts how much each individual contributes to disrup-
tive behavior in the classroom not just as a function of their own behavior, but also
their location in the network as facilitators or inhibitors of the disruptive behavior
of peers. I use the socio-metric information on individuals’ localities in the network
to investigate the structure of the network and how it affects own disruptive be-
havior.1 By combining the key player model with a unique data set on disruptive
behavior and student networks among eight graders, I can provide novel evidence
on how disruptiveness spreads in the classroom. Moreover, an application of the key
player strategy in the school context can yield important insights on how to create
effective policy interventions in education, for example on how to alter the grouping
of students in order to improve the learning environment for all.

Although the field of peer effects is well-established within economics, the empir-
ical evidence concerning peer effects in school outcomes is not conclusive, which can
in part be explained by the econometric problems associated with identifying and
estimating causal peer effects (Manski 1993, Sacerdote et al. 2011, Angrist 2014).
Previous studies on this topic suffer from a number of inferential obstacles like se-
lection, the reflection problem, or common shocks. In addition, research based on
observational data often suffers from endogeneity problems. To circumvent these is-
sues, this paper employs a theoretically informed model of peer influence and tests it
using the unique classroom network data from Swedish schools. To address the issue
of simultaneity, I use instrumental variables arising from the network structure. I
overcome the issue of endogenous group formation by using the control function ap-
proach where I simultaneously estimate network formation and outcomes (Heckman
et al. 2013).

The study draws on recent sociometric data in the longitudinal cohort sur-
1It would have been interesting to look at the actual changes in behavior within networks before

and after a student has left a class (some students are missing in wave 2 since they have either
changed class or school) and to compare the predictions of the key player model to actual outcomes
from changing class composition. Due to the small number of missing students in each school year
such an exercise will not be possible in this study.
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vey Children of Immigrants Longitudinal Survey in Four European Countries
(CILS4EU) from more than 100 schools across Sweden (n=4,794 students), collected
when participating students were in the eighth grade (aged 14-15). The respondents
have been asked to name the names of their best friends in the classroom. By us-
ing network data on students’ friendship links and self-reported problem behavior
I am able to identify the most disruptive individual in a peer group (network). I
use a composite of different measures for problem behavior indicated by survey self-
reports of delinquency (e.g. arguing with teacher(s), getting punished and skipping
school).

The empirical analysis encompasses three main steps. First, I estimate two
standard models of peer effects, the average and the aggregate, using the estimation
methods Two stage least squares (2SLS) and Maximum Likelihood (ML). Borrowing
from the literature on identification in social networks (e.g. Goldsmith-Pinkham &
Imbens (2013) and Hsieh & Lee (2016)), I use an instrumental variable arising from
the network structure to arrive at a causal estimate of peer effects. The idea is to
use characteristics of the friends of friends, under the assumption that own friends,
but not friends friends, are actively chosen (Bramoullé et al. 2009).2

I choose the model that fits the data best and use the estimate of peer effects to-
gether with the behavioral model to identify the “key player” in terms of classroom
disruptive behavior. I identify the key player in a social network as the individual
who once removed generates the largest reduction in aggregate disruptive behavior.
In the third and final step I calculate the predicted reduction in aggregate disruptive-
ness from changing class composition, i.e. when the key player is missing. Following
Lindquist & Zenou (2014), I first calculate the change in aggregate delinquency by
each network. I then create dummies for different types of players: the key player,
the most active player and a random player. I focus on the individual who has the
highest self-reported disruptiveness level (most active individual) and the individual
who once removed generates the largest reduction in aggregate disruptive behav-
ior (key player). Finally, I regress the change in aggregate disruptiveness on these
dummies in each network separately. This procedure allows me to address to what
extent the key player strategy outperforms alternative policies such as targeting the
most active individual.

The contribution of this paper is threefold, First, I provide a micro-founded
behavioral model of the contagion of disruptive behavior in the classroom. Second,
I measure the size of network effects in disruptive behavior using field data. Third,

2I complement this with alternative instruments, including variation in the number of friendship
links Lee et al. (2010), Liu & Lee (2010). Individuals have different number of friends and the idea
here is that the more friends one has, the higher is the aggregate disruptiveness in one’s friendship
network. The instrument can only be used in the estimations of the aggregate model of peer effects.
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I nail down the type of mechanism at work and resort to a key player simulation in
order to pick optimal candidates for treatment. To the best of my knowledge, this is
the first study that applies the key player strategy to social networks in education.

I find that the key player and the most active individual is the same person in
28 out of 329 networks (approximately 8.5 percent). Interestingly, the typical key
player scores well on the language and cognitive tests and is not more likely to be a
boy than a girl. I find evidence that removing the key player has a significantly larger
effect on aggregate disruptiveness in a network than removing the most disruptive
individual implying policy aimed at the most noisy individual could be inadequate.
Based on these results, I suggest alternative strategies on classroom organization to
rectify aggregate disruptive behavior.

The paper unfolds as follows. Previous literature is presented in section 2 followed
by a description of the model in section 3. In section 4, I present the data and the
definitions. I describe the identification strategy and the identification of structural
parameters in section 5. The results from the estimations of the peer effects models
and the key player simulation are presented in section 6, followed by a discussion of
policy implications in section 7. I conclude in section 8.

2 Related literature
In this section, I give an overview of the related literature and present the theoretical
framework of this study.

2.1 Peer effects in education

Previous research shows that peers influence adolescent behaviors (see for example
Sacerdote et al. (2011) for an overview of the literature). According to standard
models of peer effects, influence can occur both through the composition of the
classroom, e.g. the average level of parental education among peers (the so-called
contextual effect), or through direct interaction with classmates. For example, one
student’s decision not to disrupt the class can directly influence the behavior of
other students in the classroom. In addition, students may respond differently to
different categories of peers.

The literature on peer effects in education suggests several plausible models of
peer effects: the bad apple, shining star, average and aggregate model among others
and the behavior mechanisms of these models point to different policy implications.
For example, the average model suggests policies that aim at changing the group
norm while the bad apple or the shining star models imply individual-based rules
targeting students in the extreme parts of the ability distribution. In this paper, I
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compare the average and the aggregate model of peer effects.3 This comparison is
informative since it tells us whether it is the sum of friends disruptive behavior or
the norm, i.e. the average disruptiveness among friends, that best describes peer
effects in disruptive behavior and to what extent policy should be aimed at targeting
the most active or the most central individual. Below, I describe the average and
the aggregate model in more detail.

According to the average model, or the so-called standard linear-in-means model,
individual outcome may be affected by the mean outcome of the peer group (endoge-
nous), individual characteristics (exogenous), the mean characteristics of the peer
group (exogenous) and unobservable correlated effects at the group level. Peers can
set norms of conduct and exert social pressures for or against misbehavior and this
model incorporates a cost from deviating from the social norm; individuals may be
penalized if they deviate from the average activity of the reference group (see e.g.
Liu et al. (2014) for a discussion on the social conformity effect). If students tend
to conform to the social norm, then policy should be aimed at the majority in the
classroom to promote desirable behavior.

One of the underlying assumptions of this model is that the peer effect is the same
for all members of a given peer group. However, this assumption may be erroneous
as the spillover effects may be larger for some categories of students than for others.
In addition, the effects of peers may operate non-linearly or through moments other
than the mean. A number of papers have recently addressed this issue by trying to
estimate different types of heterogeneous peer effect models. Overall, the findings are
mixed; while some studies reject the linear-in-means model (see in particular Hoxby
& Weingarth (2005)), others provide evidence in favor of the model when compared
to individual-based models such as the bad apple or the shining star model (Liu
et al. 2014, Tatsi 2015). Hoxby & Weingarth (2005) find that students seem to
benefit from interacting with classmates at the top of the ability distribution while
Tatsi (2015) finds support for the linear-in-means model, implying that students
tend to conform to the classroom norm.

The aggregate model suggests that it is the peers sum outcome that matters
for individual outcome. Furthermore, this effect may be multiplied by the number
of students engaging in disruptive behavior. For example, one students decision
not to disrupt the class can directly influence the behavior of other students in
the classroom. This mechanism is the so-called social multiplier. Put simply, the
model predicts that the more friends an individual has, the higher the sum of friends
activity and the higher is individual activity. If it is the complementarities of friends

3Liu et al. (2014) also compare the average and the aggregate model but in contrast to this
study, they examine the interaction between the variables study effort and sport activity using the
National Longitudinal Survey of Adolescent Health (AddHealth) survey.
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behavior that affects individual outcome, i.e. if students are more influenced by high-
status peers rather than for example the most active individual, then the aggregate
model should be more relevant in explaining peer effects in disruptive conduct.

2.2 Disruptive classroom behavior

Although prior work on spillovers in eduction is extensive, literature on student
misbehavior and its dynamics remains fairly unexplored. Due to both observed and
unobserved heterogeneity across schools and classrooms and the complex nature of
social interaction, obtaining credible estimates of peer effects is particularly chal-
lenging. The social dynamics of the classroom are complex as defiance of teacher
authority can be either overt or covert (McFarland 2001). Moreover, the rules on
classroom interaction vary across schools and classrooms.4 The same applies to
teacher sanctions which may vary in form (formal and informal). A rather popular
method of dealing with the endogeneity issues in studies on peer effects in the school
setting is to exploit year-to-year variation in peer composition in schools in order to
identify a causal influence of peers on individual outcome.5

The recent study of Kristoffersen et al. (2015) makes use of the variation in peer
composition in school-cohorts to estimate the influence of peer quality on individual
academic achievement. The researchers exploit the entry of disadvantaged children,
or so-called “potentially disruptive peers”, to identify the peer effect in reading test
scores. Three categories of children are of particular interest: children with divorced
parents, children with criminal parents and children with a psychiatric diagnosis.
They find significant and robust effects on peers’ academic achievement in reading
when a new potentially disruptive student is enrolled in a school.6 A related study
of Carrell & Hoekstra (2010) investigates the influence of children from troubled
families on peers’ test scores in maths and reading and in deviant conduct.7 The
authors exploit the variation within families to arrive at a credible estimate of peers’
behavioral externalities. They use childrens’ school records matched with domestic
violence cases and find a significant effect of being exposed to a child from a troubled
home. The effect is mainly driven by boys and children from low-SES families.
According to the authors, the results provide evidence in support of the “bad apple”

4Group sizes are also important. See for example Lazear (1999), McFarland et al. (2014),
Roman (2016) and Frank et al. (2013).

5A large strand of the literature (Black et al. 2013, Hoxby 2000, Gould et al. 2009) use idiosyn-
cratic variation in peer characteristics across cohorts.

6The authors also find heterogeneous effects. The effect seems to be strongest when the new
student is a child with a psychiatric diagnosis.

7See also Carrell et al. (2016) who show that there are long-run consequences of being exposed
to a disruptive peer. The authors apply the same identification strategy as in Carrell & Hoekstra
(2010).
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model of peer effects.
Contrary to prior work based on observational data, I approach the issue of

disruptive behavior in the classroom by investigating the architecture of classroom
networks. By using a networks approach to this topic, I can identify the transmission
channels of teenage group pressure, thus generating new insights on how adolescent
behaviors spread in the classroom.

Are boys more susceptible to peer pressure in disruptive behavior than girls? It
is possible that teachers reorganize their classrooms in a fashion that disconnects
networks of misbehaving students, for example groupings of boys where the peer
effect or group pressure to rebel against the teacher is strong. A long-established
strategy is to place boys in the front row or next to girls based on an alternating
gender rule.8 The purpose of a rule as such is to restrain boys from disruptive
conduct which suggests that the baseline disruptiveness and/or the peer contagion
effect is stronger among boys than girls. Studies like for example Hoxby (2000)
and Lavy & Schlosser (2007) examine the effect of the gender composition of the
classroom on school outcomes and their findings suggest that both sexes perform
better in school in classrooms with a higher proportion of girls.

In this paper, I study the observable characteristics of the key player and examine
the notion that boys are more often facilitators of problematic behavior than girls. I
assume that the relevant peer group is the direct friendship network: the decision to
disrupt depends on the social values of one’s friends rather than a random disruptive
individual in the classroom.9

2.3 The key player

While network measures of centrality have long been used in the sociological lit-
erature (see for example Wasserman & Faust (1994)), the issue of identifying key
players in networks was first introduced by Borgatti (2006, 2003). Previous studies
on social networks and behavior have mainly applied the key player strategy to net-
works of juvenile delinquency Liu & Lee (2010) and co-offending networks (Lindquist
& Zenou 2014). In the studies of Ballester et al. (2010), Ballester & Zenou (2014),
the key player is defined as the individual who once removed generates the greatest
reduction in aggregate crime.

The idea behind the key player strategy is to aim interventions at key individuals.
8In Swedish this strategy is called varannan flicka och varannan pojke (“everyother girl and

everyother boy”).
9Presumably, it is not the behavior, in this case the level of disruptiveness per se, that influence

individual choices but the social values and norms held by one’s peers (for example unobservable
effort). Fruehwirth (2013) and Boucher & Fortin (forthcoing) draw attention to the importance of
modeling the proxy and the “true interaction variable” separately.
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According to the key player theory, removing the key player can have substantial
effects on adolescent behavior because of social multipliers (Zenou 2016). By lower-
ing the disruptive behavior of central individuals with many social connections, the
sum of the disruptiveness among their friends is reduced through both a direct and
an indirect effect. The direct effect being the individual’s own disruptiveness and
the indirect effect being the effect of that individual’s behavior on other students in
the network (the social multiplier effect).

The literature on social networks in education is relatively scarce (important
exceptions include Calvó-Armengol et al. (2009), Bifulco et al. (2011), Patacchini
et al. (2016) and Hsieh & Lee (2016)). Apart from the studies of Calvó-Armengol
et al. (2009) and Hahn et al. (2015), I am not aware of any other paper that tries to
identify the key player in a classroom setting. The scarcity of previous research on
social networks in this field is partly due to lack of detailed network data on schools
and classrooms. This paper picks up where Calvó-Armengol et al. (2009) left off
and provides the first illustration of how of the key player strategy could be applied
in educational settings.

2.4 Contribution

The first main contribution of this paper is to the literature on peer effects. In con-
trast to the majority of peer effects studies which base their empirical analysis on
observational data, I use self-reported friendship data in order to solve the method-
ological problems associated with identifying and estimating peer effects. While it
is difficult to construct a research design that convincingly captures the causal ef-
fect of peer effects, the theoretically informed model of peer influence presented in
this paper and the unique network data in CILS4EU enable me to provide credible
estimates of peer effects on adolescent misbehavior. The second contribution is to
the literature on social networks in education. To my knowledge, this is the first
study that applies the key player strategy to social networks in a school setting.
In the spirit of Lindquist & Zenou (2014), I identify the key player in educational
networks and discuss optimal targets for treatment. The third contribution is to
the literature on disruptive behavior. It is the first study that explicitly models
disruptive behavior in the classroom.

3 Model
In this section, I present two models of peer effects and derive the respective model
equilibrium. Thereafter, I present the key player strategy.
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I adopt the network model of peer effects of Calvó-Armengol et al. (2009). Follow-
ing Lindquist & Zenou (2014), I present two separate utility functions for the aggre-
gate and the average model of disruptiveness.10 In the aggregate model, each agent
chooses his or her level of disruptiveness, yi, proxied by problem behavior in order to
maximize own utility ui (·), which is an increasing function of the “gains” of disrup-
tiveness (ai +η+ϵi), the disruptiveness of other students in network y = (y1, ..., yn)′,
the social cost or stigma of being punished by the teacher −1

2y2
i , and the adjacency

matrix G capturing the friendship network. The parameter ϕ captures the strength
of the complementarities.

ui(y, G) = (ai + η + ϵi)yi − 1
2

y2
i + ϕ

n∑
j=1

gijyiyj (1)

Moreover, each individual has his or her own disruptive ability ai which depends
on one’s observable attributes, the average observable characteristics of one’s friends,
and the total number of friends indicated by gi.

ai = xiβ1 + 1
gi

n∑
j=1

gijxj
′β2 (2)

The individual characteristics are captured by β1 while β2 represents the con-
textual effects.11 ϵi represents idiosyncratic shocks and η are network fixed effects
which capture the environment at the network level.

Analogously, the average model of peer effects is the following:

ui(y, G) = (ai + η + ϵi)yi − 1
2

y2
i − 1

2
λ

yi −
n∑

j=1
g∗

ijyj

2

(3)

where g∗
ij is the row-normalized adjacency matrix and the parameter λ captures

the strength of social-conformity.
The difference between (1) and (3) is the last term. In the average model individ-

uals are influenced by the social norm. There is a punishment (a cost) for deviating
from the social norm which is increasing with the distance from the average activity
among one’s peers, as indicated by the expression

(
yi − ∑n

j=1 g∗
ijyj

)2
. The param-

eter λ measures the strength of conformism in a network. In the aggregate model,
an increase in the total disruptiveness of one’s reference group increases individual
marginal disruptiveness, represented by the expression ∑n

j=1 gijyiyj.

10In this subsection I closely follow Lindquist & Zenou (2014).
11See Lindquist and Zenou (2014) for a detailed discussion of the model.
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3.1 Model equilibrium

In equilibrium each agent chooses yi, one’s own level of disruptiveness, in order to
maximize utility ui(y, G). The choices are made simultaneously by all agents. Thus,
agent i’s best-reply function in the aggregate model is:

y∗
i = ϕ

n∑
j=1

gijyj + ai + η + ϵi (4)

where ai is defined above. Let αi = ai + η + ϵi for each agent i and α be a vector
(non-negative) keeping track of all αi. Also, let µ(G) denote the spectral radius of
G.

The best-reply function in the average model is:

y∗
i =

λ
∑n

j=1 g∗
ijyj + ai + η + ϵi

(1 + λ)
(5)

For notational simplicity, let ϕ = λ
(1+λ) , the social conformity coefficient in the

average network game. Analogously, let αi = ai+η+ϵi

(1+λ) for each agent i and α be a
vector (non-negative) keeping track of all αi.

Proposition 1 Consider a disruptiveness game where the utility function of each
agent i is given by (1) with ai > 0 for all i defined by (2). If ϕµ(G) < 1, then the
game has a unique Nash equilibrium in pure strategies given by:

y∗ = bα(g, ϕ) = (I − ϕG)−1α. (6)

See proof in Calvó-Armengol et al. (2009).

Proposition 1 (Ballester & Zenou 2014) says that at the Nash equilibrium, each
agent’s disruptiveness is proportional to her weighted Katz-Bonacich centrality. The
influence is heterogeneous as a result of the locational differences of individual agents
in the network. Both direct and indirect friendship ties matter, but more connected
agents are given a higher weight.

3.2 The key player strategy

The key player in a social network is defined as the individual who once removed
generates the largest reduction in aggregate disruptive behavior. Hence, the planner
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solves the following problem:

max y∗(g) − y∗(g−i)|i = 1, ..., n (7)

where y∗(g) is equal to the aggregate level of disruptiveness in network g and
y∗(g−i) the aggregate disruptiveness once individual i is removed. The maximization
problem (7), or the so-called key player strategy, involves identifying the individual
who contributes most to the aggregate disruptiveness in the network.

The key player strategy is generally applied to the aggregate model. Below, I
outline how I define the key player in the aggregate network game. At this point
two assumptions are in order. First, I assume that the adjacency matrix G is fixed.
Second, I assume that individual disruptive ability denoted ai in (2) is unrelated to
G.

As a measure of centrality, I use the Bonacich network centrality (Katz 1953,
Bonacich 1987). To identify key players in networks I use the Bonacich centrality
measure and a concept called contextual intercentrality defined as below.

Definition 1 Given a vector u ∈ R, and a small enough scalar ϕ ≥ 0, the vector
of Bonacich centralities of parameter ϕ in network g is defined as:

bu(g, ϕ) = (I − ϕG)−1u =
∞∑

k=0
ϕkGku

The Bonacich centrality of agent i is constructed as the sum of all paths between
agent i and all j ∈ 1, ..., n of length 0 to k. Each path of length k is weighted by
ϕk. This number is then multiplied by ui.

Definition 2 For all networks g and for all i, the contextual intercentrality
measure (Ballester & Zenou 2014) of agent i is:

di(g, ϕ) = B(g, ϕ) − B(g−i, ϕ)
= Γ′

nMα − Γ′
nMαi − Γ′

nMiαi

= B(g, ϕ) − B(gi, ϕ) +
bα[i],i(g, ϕ) ∑n

j=1 mji(g, ϕ)
mii(g, ϕ)

(8)

B(g, ϕ) corresponds to the total Bonacich intercentrality in network g while
B(g−i, ϕ) is the total intercentrality once agent i is removed from the network. An
agent i∗ is the key player that solves the planner’s problem in (7) if and only if i∗ is
the agent with the highest contextual intercentrality di(g, ϕ).12

Given that individuals are ex ante homogeneous, network location is irrelevant
12See proof in Ballester & Zenou (2014).
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in the average model. Lindquist et al. (2015) provide the first study that includes an
application of the key player strategy for the average model.13 When individuals are
identical with respect to their observable characteristics, which individual to target
will not matter unless her locality in the network has the feature of a bridge, i.e.
the removal of this agent will give rise to isolated individuals (Liu et al. 2014).

Although there is no analytical solution to (5) in the average network game if
individuals are heterogeneous, as noted by Lindquist et al. (2015), it is still possible
to identify key players numerically using the estimated parameters in the best reply
function and the first line of equation (8).

An application of the key player player strategy in the average network game is
possible in the case outlined in this paper since the friendship networks are incom-
plete, i.e. individuals are not fully linked with each other. This means that there
will be variations in the connectedness and the localities of individual agents as well
as individual heterogeneity in disruptiveness which will be captured by the social
multiplier.

4 Data and descriptives
In the following section, I describe the data and present some descriptive statistics.

4.1 Sociometric data

The data set I use, Children of Immigrants Longitudinal Survey in Four European
Countries (CILS4EU, Kalter et al. (2013)), is a new, longitudinal cohort survey
conducted in four countries: England14, Germany, the Netherlands, and Sweden.
The sample is designed to be nationally representative in each country and was cre-
ated using a stratified three-stage design, interviewing students in sampled school
classes. Schools were stratified according to the proportion of children of migrant
background, thus the sample contains an overweighting of schools with a high num-
ber of children with foreign-born parents. Since these schools tend to be located in
areas of concentrated economic disadvantage where classroom disruptive behavior
is also more widespread, the sample is congenial with my purposes.

CILS4EU data entails several advantages compared to the data used in previous
studies. First, it includes detailed information on the survey participants’ friendship
links and negative nominations in 249 Swedish classrooms (4,794 students in total).
CILS4EU includes not only in-school friendship nominations but also outside-school
nominations (not sociometric). Second, the best friend questionnaire included in

13Liu et al. (2014) gives some examples.
14Only England took part in the UK.
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CILS4EU contains additional information on the characteristics of friends outside
of school (see questionnaire items in Appendix C).15

The stratified sample allows detailed analyses of the social integration of immi-
grant children specifically, a group of great interest given the increased importance
of immigration in Western countries. Immigrant children and children with an im-
migrant background lag behind children of native-born in educational performance.
Foreign-born students are, for example, less likely to be eligible to attend upper
secondary school than their native-born counterparts, but tend to make more am-
bitious study choices given attained school grades (see Arai et al. (2000), Jonsson
& Rudolphi (2011) and Heath & Brinbaum (2014)).

The first wave of CILS4EU was performed in the school year 2010-2011 when
participating students were in the eighth grade (ages 14-15). The number of re-
spondents in the main questionnaire in the school year 2010-2011 was 5,025 and the
response rate was about 86 percent. I use the Swedish sociometric classroom data
(n=4,794) which was collected in the first wave of CILS4EU. 16 I define friendship
on the basis of the question “Who are your best friends in this class?” to which the
student could nominate a maximum of five individuals. A link between two students
exists if either of them, or both, nominated the other as a “best” friend. Thus, I
treat the network as undirected (although an interesting extension in future work
may be to allow for directed networks).17

Students who were absent on the day of the network questionnaire or who re-
fused to participate were excluded from the class roaster and the set of potential
friend nominees. Individuals who did not nominate anyone have been dropped from
the friendship network analysis (see Appendix A for more details on data creation
procedures). Due to these restrictions the sample is reduced to 4,219 observations.

Figure 1 plots the distribution of the number of links per actor, the so-called
degree centrality. The visible drop at 5 on the x axis is explained by the maximum
number of possible nominations; those with degree greater than 5 have at least one
incoming nomination that is not reciprocal.

[FIGURE 1 HERE.]
15To my knowledge, the only comparable data set to CILS4EU in both survey design and size

is the AddHealth data set which includes longitudinal sociometric classroom data in the US.
16The advantage of using Swedish data compared to data from the other participating countries

in CILS4EU is that there is no formal tracking within Swedish compulsory school system (grades
1-9). Hence, one would expect there to be less formal sorting of students according to ability than
in for example Germany with relatively early tracking procedures.

17Although it has been argued that a non-response rate of more than about 75 percent could risk
the reliability of the nomination measure (see for example Hjalmarsson & Mood (2015) and the
references therein), I keep all the classrooms in the analysis for efficiency reasons. See Appendix
B for robustness checks.
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4.2 Network properties

A classroom network is an n×n matrix g with generic element gij. The relationship
between any two actors (i, j) is mapped by their value of gij ∈ {0, 1} where gij = 1 if i

and j are friends, 0 otherwise. I assume that links are reciprocal, i.e. gij = gji. Each
network is represented by an adjacency matrix G. The friends of friends adjacency
matrix G2 is derived by multiplying G by itself, G3 is the adjacency matrix cubed
and so on. Hence, Gk holds the number of walks of length k.

The degree of actor i, denoted γi(g), is defined as the number of friends that i

is directly linked to, and is equivalent to the number of 1’s in row (column) i of g.
A walk is a sequence of links or edges. A path exists between actors i and j either
if they are directly linked, and/or if there exists a chain of individuals h such that
gih1 = gh1h2 = · · · = gHj = 1. The distance between two actors is the shortest such
path that it takes to reach j from i, which I write δij(g).

All these measures have corresponding expectations at the network level. Thus, I
define the average degree of a network g as γ(g) = ∑n

i=1 γi(g)/n. Similarly, the aver-
age distance of g is taken over all possible pairings as δ(g) = ∑n

i=1
∑n

j=1 δij(g)/n(n−
1).

The degree centrality measure is defined as the number of links of an actor.
Figure 1 shows the distribution of degree centrality in the Swedish classroom data.
The betweenness centrality is defined as the number of times an actor i lies along the
shortest path (geodesic) between two other actors (all other pairings). Actors with
high betweenness centrality can act as gatekeepers by connecting isolated parts of
the network. The eigenvector centrality of an actor is defined as:

xi = 1
λ

j=n∑
j=1

gijxj

and depends not only on the number of links but also on the quality of those
connections. Two actors can have the same number of links but considerably differ-
ent eigenvector centrality scores. An actor that is connected to more central nodes
(i.e. high-quality connections) will be more “important” in the network and thus
outrank others. x is an eigenvector of the adjacency matrix and λ > 0 is the cor-
responding eigenvalue (a constant). A related centrality measure is the Bonacich
network centrality (Katz 1953, Bonacich 1987) previously defined in section 3.2 on
the key player.

4.3 Descriptive statistics

Table 1 shows descriptive statistics for selected variables in the data set. The un-
derlying questionnaire items are described in greater detail in Appendix C. The
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analysis sample consists of 4,219 individuals and 374 networks. Half of the sample
is male and approximately 68 percent have two native-born parents. The sample in-
cludes individuals who have nominated others and have themselves been nominated.
Students with no friendship links have been dropped.

[TABLE 1 HERE.]

The disruptiveness measure is created using the question: “How often do you...
(Every day, Once or several times a week, Once or several times a month, Less
often, Never) (i) argue with a teacher, (ii) get a punishment in school (for example
being kept in detention, being sent out of class, writing lines), (iii) skip a lesson,
and (iv) come late to school?”. The response options are coded as 1 (Never) to 5
(Every day). The imputed disruptiveness measure is thus a summed index of the
four delinquency behavior dummies presented in table 1.18 The minimum score on
the disruptiveness index is 4 and the maximum is 20. Individuals with missings
on all the underlying variables of the imputed disruptiveness measure have been
removed (in total 12 students).

An important question is what the actual underlying distribution of disruptive-
ness is as this is going to matter for the treatment. Is a small change in friends’
disruptiveness associated with a large or a small change in individual disruptiveness?
Alternative versions of the disruptiveness measure include the first principal compo-
nent from a factor analysis and the average of the top four delinquency variables.19

Figure 2 shows the distribution of disruptiveness. The distribution is skewed
to the right and has a mean of 6.4. The distribution of friendship networks in the
sampled classrooms is shown in figure 3.

[FIGURE 2 HERE.]

[FIGURE 3 HERE.]

Figure 4 depicts the architecture of a classroom network with 27 students. Ta-
ble 2 reports selected network characteristics. The largest network consists of 28
students and the smallest of 3.20 The mean network size is roughly 16. The average
number of links (undirected) is roughly 4. The Katz-Bonacich measure ranges from
7.5 to approximately 15.0.

[FIGURE 4 HERE.]
18The index is created using the full sample.
19I have documented how the effect changes (sign, magnitude and significance) depending on

the definition of disruptiveness and the analysis is available upon request.
20Networks with less than 3 members have been removed from the key player simulation.
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[TABLE 2 HERE.]

I use a dummy variable to indicate the gender of a student (1=male). The
variable HISEI is defined as the highest index of occupational status of parents.21

Throughout the main analysis of this paper, I define children of immigrants as
children with both parents born abroad regardless of own birthplace. The immigrant
background variable is based on students’ questionnaire answers about their parents’
region of birth. The reference category consists of students with at least one native-
born parent.

The CILS4EU data include individual scores on both a cognitive and a language
test. The two tests were performed in the first wave of the survey during the school
year 2010-2011.22 The language test is a test of a child’s lexicon of Swedish antonyms.
The test includes 30 items with 4 alternatives each (for more information, see the
technical report by Kruse & Konstanze (2016)). The cognitive test is “language
free” and as such does not require any particular language skills. It is a 7 minute
multiple-choice test of graphical puzzles including 27 items with properties similar
to Raven’s Progressive Matrices (Raven 2003). The maximum score is of this test
is 27 and the minimum is 0.

5 Empirical strategy and identification
In this section, I describe the identification strategy along with the identification of
structural parameters.

5.1 Econometric model

I employ two econometric network models: the average the aggregate.23 The econo-
metric equivalent (written in matrix form) of the best reply function for disruptive

21ISEI stands for International Socio-Economic Index of Occupational Status. The variable
indicates the maximum based on the variables y1iseifG and y1iseimG indicating the occupational
status of mother and father respectively. Individuals with missing values on the variable indicating
HISEI (272 cases) have been given the sample average.

22In the analysis these variables are treated as exogenous, however, since they are measured at
the same time as the outcome variable individual disruptiveness they could be endogenous. In an
ideal setting, these would be constructed with a lag as is common in the network literature.

23There are applications of the key player strategy (see for example Lindquist et al. (2015)) that
employ a hybrid model of peer effects where both adjacency matrices are included in the same
model estimation. A potential issue here is that the two matrices could be collinear, i.e. one is a
linear combination of the other. To circumvent this problem, Tatsi (2015) transforms the adjacency
matrices. However, even if one of the matrices comes out as more important than the other it is
still impossible to rule out collinearity. Hence, in this study I test the models separately.

16



behavior in the aggregate model specified in (4) is the following:

Yr = ϕGrYr + Xrβ + G∗
rXrγ + µnr + ϵr (9)

Similarly, the econometric specification of the best reply function for disruptive
behavior in the average model specified in (5) is:

Yr = ϕG∗
rYr + Xrβ + G∗

rXrγ + µnr + ϵr (10)

where r denotes the network and nr is the number of observations in each net-
work, Yr is a nr × 1 vector of observations of the outcome variable disruptive behav-
ior, X is the nr × k matrix of exogenous variables such as age, gender and family
characteristics, G∗ is the nr × nr row-normalized adjacency matrix that gives the
(undirected) connections gij, GrYr is the nr × 1 vector of peers’ disruptive behavior,
µnr is the network fixed effect, and ϵr is the error term. ϕ, β and γ are the estimated
parameters. The adjacency matrix is row-normalized in the average effects model.

5.2 Endogenous network formation and correlated effects

Networks are formed endogenously: who our friends are is not at all random but
contingent on both our own characteristics and those of our friends. The famous
proverbial expression friends of a feather flock together describes the tendency of
individuals with similar backgrounds and preferences to associate with one another.
Moreover, contextual effects, i.e. the mean characteristics of friends (or any refer-
ence group), could be correlated with school effects. Thus, in order to identify a
credible peer effect one must first correct for the endogenous sorting of individuals
into schools, classrooms and friendship networks. The challenge is to disentangle the
effect of the behavior among friends (endogenous effect) from the effect of friends’
characteristics (contextual effect) and the influence of the shared environment (cor-
related effect).

The identification of peer effects rests on the assumption that the socio-matrix G
is exogenous (or conditionally exogenous). Peer effect models suffer from a Heckman-
style selection bias and the adjacency matrix G has built-in endogeneity. For one,
there is simultaneity in the outcome variable since individuals choose their disrup-
tiveness level simultaneously. Second, friendship networks are formed endogenously,
i.e. there is an omitted variable bias.24 The main threat to the identification strat-
egy employed in this paper is potential unobservable heterogeneity at the individual,

24The friendship networks could be formed based on for example individual disruptiveness. Ide-
ally, one would like to use lagged individual characteristics in peer effect estimations, however, the
questions that the disruptiveness measure is based on as well as the cognitive and language ability
test scores are only available in the first wave of CILS4EU.
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school or network level. For example there may exist network-specific factors that
are correlated with individual disruptiveness.

I address the issue of simultaneity (Manski 1993) by using instrumental variables
(2SLS/GS2SLS) and Maximum Likelihood (ML) estimation. Different instruments
are used in the 2SLS approach in order to take care of potential correlated effects.
First, I use characteristics of the friends of friends, under the assumption that own
friends, but not friends friends, are actively chosen (Bramoullé et al. 2009). Peers’
characteristics are used as an instrument for average peer outcomes, i.e. the matrix
G2X is used as an instrument for Gy. The structural parameters in model (12) can
be identified if I, G and G2 are linearly independent and if the friendship network
between individuals is intransitive (everyone is not friends with everyone).

The second instrument (Lee et al. 2010, Liu & Lee 2010) is defined as the number
of friendship ties. Individuals have different number of friends and the idea here is
that the more friends one has, the higher is the aggregate disruptiveness, JGY, in
one’s friendship network. This instrument is only valid in the case of the aggregate
model. Following Tatsi (2015) I also use the Best IV as proposed by Lee (2003)
and the results are reported in Appendix B. The Best IV performs only marginally
better than the “standard” 2SLS.

The ML strategy tackles the problem of simultaneity by modifying the form
of the likelihood function in order to control for the autocorrelation between the
observations.25 Moreover, the ML approach requires that the errors are distributed
normally.

I overcome the issue of endogenous group formation by using the control function
approach of Heckman et al. (2013). I estimate a spatial Durbin model (Elhorst
2010) and a dyadic network formation process (Graham 2015, Arduini et al. 2015).26

The root of the omitted variable bias problem is potential correlation between the
errors in the model explaining individual disruptiveness and individual behavior in
friendship link formation.27 The control function approach is described in further
detail in section 5.4 below.

I avoid the reflection problem Manski (1993) since the analysis in this study is
based on network data, meaning that the characteristics of direct friends are not the
same for all individuals given the incomplete structure of the network. As a result
of this, the contextual effects can be isolated from the peer effect. Furthermore,
everything that is common at the classroom and the network level, such as the

25The introduction of an log Jacobian term in the likelihood function accounts for simultaneity
and disallows the regressors to be correlated with the error terms, thus removing the possible bias
in the estimates generated by the simultaneity term (Drukker, Prucha & Raciborski 2013).

26See Elhorst (2010) for an overview of different spatial dependence models.
27This is discussed in detail in Goldsmith-Pinkham & Imbens (2013).
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quality of the teacher, is captured by the network fixed effects (see section 5.3 below).
Another potential source of bias is measurement error or incomplete information of
friendship links. In line with Lindquist & Zenou (2014) I perform a number of
robustness checks in order to asses the validity of the results (see Appendix B).

5.3 Network fixed effects

In the analyses I use fixed effects at the network level where the network is defined
as subcomponents (igraph terminology) of the socio-matrix G. A subcomponent of
G consists of all individuals that are weakly connected to each other in a classroom.
Thus, the reported direct friends of individual i is a subset of i’s network. The
number of friendship nominations is restricted to 5 classmates. The restriction is
not binding. Links are not necessarily reciprocal hence the degree distribution rages
from 1 to 13. Moreover, a network in the analysis sample can consist of up to 28
students.

Common shocks like for example environmental shocks may bias the estimates
of peer effects. The fixed effects imply that I only explore variation within networks.
By doing so I assume that the relevant interactions take place at the network level.
I apply a so-called network-mean transformation by multiplying equation (9) by the
matrix Jr = Imr − 1

mr
lrl

′
r, where Imr is the identity matrix and lr is a vector of

ones. I do the same for equation (10). This transformation implies that I subtract
the network average from each individual-level variable. Hence, the corresponding
aggregate model of peer effects with network fixed effects becomes:

JrYr = ϕJrGrYr + JrXrβ + JrG
∗
rXrγ + Jrϵr (11)

Analogously, I arrive at the following network-mean transformed average model
of peer effects:

JrYr = ϕJrG
∗
rYr + JrXrβ + JrG

∗
rXrγ + Jrϵr (12)

5.4 The control function approach

The control function approach consists of two stages: a selection equation and an
outcome equation (Heckman et al. 2013, Wooldridge 2015). Individuals tend to
exhibit homophily in covariates such as gender, ethnicity and socio-economic back-
ground.28 The link (or “dyad”) formation equation comprises of these variables as
predictors of friendship ties. In the first step the binary dependent variable “link”

28See the seminal work of McPherson et al. (2001) on homophily in social networks.
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(1=reported friendship link) is regressed on individual-specific observable charac-
teristics and dyad attributes. In order to qualify as a valid instrument for link
formation the exclusion restriction variable(s) should affect the probability of two
individuals forming a friendship tie but not the individual decision to disrupt.

I claim that G is exogenous once I correct for possible sorting which is done
by including the residuals from the link formation estimation in the outcome equa-
tion. Moreover, the links are undirected and the selection correction term is at the
individual level as in Graham (2015).29 The link formation process is modeled as
follows:

gij = α0 + αd|Xi − Xj|+αc|Xi − Xj|+αCCij + αf |φi − φj| (13)

where Cij represents the link characteristics, |Xi − Xj| the distance between
the observed characteristics (either dichotomous or continuous indicated by d or
c), ur and |φi − φj| the distance between the unobserved characteristics between
individuals.

The outcome model in the second stage is either the aggregate or the average
model as described above including the estimated residuals, νn, in the first stage:

JrYr = ϕJrGrYr + JrXrβ + JrG
∗
rXrγ + Jrϵr + νn (14)

JrYr = ϕJrG
∗
rYr + JrXrβ + JrG

∗
rXrγ + Jrϵr + νn (15)

Since the second stage model includes the residuals from the fist stage the esti-
mated coefficients are plagued with noise from the first stage (Hardin et al. 2002).
One way to examine the bias is to use bootstrapping methods. As this procedure
is computationally intensive, at this stage I only present the results with robust
standard errors and explore how the estimates and standard errors change when the
residuals are included in the outcome model. 30

6 Empirical results
In this section, I compare different models of peer effects and arrive at an estimate
of peer effects in disruptive behavior. The estimate is then used in the key player
simulation.

29See Arduini et al. (2015) for a model with directed links.
30An alternative solution is to follow Murphy & Topel (1985) by adjusting the covariance ma-

trix.Murphy & Topel (1985) provide a consistent estimator of the covariance matrix. See also
Del Bello et al. (2015).
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6.1 Estimated peer effects

Table 3 shows the results from the regressions for the average, the aggregate and
the hybrid model of peer effects estimated by standard OLS. Columns (1) and (2)
report the results from the average and the aggregate models of peer effects in
disruptiveness. The baseline model, the raw hybrid model of peer effects which
incorporates both effects of peer spillovers, is shown in column (3). If both effects
are not included there is a potential upward or downward bias (Liu et al. 2014).
The average peer effect estimate in column (1) is positive and significant (p<0.01).
Unconditional on individual and friends’ characteristics, a one point increase in
the average disruptiveness of friends is, on average, associated with a 0.31 point
increase in individual disruptiveness (the mean of the dependent variable is 6.36).
The corresponding estimate in the aggregate model is shown in column (2). A
one point increase in the aggregate disruptiveness of friends is associated with a
0.02 point increase in individual disruptiveness, on average (p<0.01). In sum, both
effects are positive and significant in the separate models but when they are both
included in the hybrid model the estimate for the aggregate peer effect vanishes and
loses significance (see column (3)) while the average peer effect estimate remains
unchanged (0.31, p<0.01)

[TABLE 3 HERE.]

The results from the different specifications in table 3, columns (1)-(3), suggest
that the average model explains the data best.31 Hence, the preferred specification
is the average model of peer effects. Column (4) shows the average peer effect
conditional on covariates. Interestingly, none of the friendship characteristics are
significant.

In column (4) I also include controls of individual and friends average character-
istics. The individual characteristics consist of language and cognitive test scores,
gender, socioeconomic background, immigrant background and age. In line with
expectations, language and cognitive ability test scores are negatively related to
individual disruptiveness. Next, I add fixed effects at the network level (table 3,
column (5)). Once I control for possible sorting and common environmental factors,
the average peer effect estimate changes sign and loses significance (-0.10, p<0.10).
A plausible explanation for this result is that too much variation has been lost by
introducing the network fixed effect.

The purpose of this exercise is essentially a matter of identifying the transmis-
sion mechanism. The question is whether it is operating among direct friends, the

31However, the results should be interpreted with caution. A potential issue here is collinearity
between the two adjacency matrices.
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friendship network (friends of friends) or at the classroom level. The network fixed
effect should take care of any extreme cases at the network level. However, if the
causal peer effect operates through a channel other than the friendship level, for
instance a factor at the classroom level, not controlling for sorting into networks is
going to result in a biased peer effect estimate. On the other hand, by introducing
a classroom fixed effect the network may capture part of this variation rather than
the peer effect estimate at the friendship level. In that case the estimated coefficient
could switch sign and still be biased because the effect is carried over to the network
level.

Due to simultaneity and omitted variable bias (as discussed in section 5.2) the
average peer effect estimate from OLS reported in table 3 is likely biased. In order
to address these identification issues I consider two alternative estimation meth-
ods: Generalized spatial two-stage least squares (GS2SLS) and Maximum likelihood
(ML).32 A drawback of the ML approach is the restrictive assumptions about the
distribution of the error terms. The 2SLS approach will render consistent estimates
but in small samples it may be inferior to the biased OLS estimates in terms of
goodness of fit (see Anselin (1988)).

Before I estimate the GS2SLS model I need to find a valid instrumental vari-
able. Initially I only consider predetermined characteristics, such as gender, age,
ethnicity and parents’ socio-economic status. Next, I also include the character-
istics of the parents even if the extent to which these covariates are exogenous is
debatable.33 The GS2SLS model is estimated using the spreg command in Stata
(sppack).34 The preferred instrument is then used in the estimations using GS2SLS
below. A combination of predetermined individual characteristics and parental at-
tributes results in the highest first stage F-stat, although it is still weak (around
6). A weak instrument could potentially do more harm than good by generating
inconsistent estimates and incorrect confidence intervals which is why I extend the
analyses with ML estimations.35

In the next step, I use the ML and GS2SLS estimators for the parameters of a
linear cross-sectional spatial-autoregressive model as suggested by Drukker, Prucha

32See Kelejian & Prucha (1998) and Lee (2003). See also Drukker, Peng, Prucha, Raciborski
et al. (2013), Drukker, Prucha & Raciborski (2013).

33The standard practice is to instrument G with G2. However, other instruments are also
theoretically motivated (for example G3 and/or G4 and/or G3). Also one could consider parents’
characteristics such as marital status, paid job, religion, age, nationality and ISCO 2008.

34The output from spreg does not include first stage F-stats hence I try out alternative instru-
ments using two-stage least squares using the Stata package ivreg2. The first stage F-statistic of
these estimations ranges between 1 and 6 which is much less than the convention or rule of thumb
of at least 10. The results of estimations with the “Best IV” are presented in table B2 in Appendix
B.

35See Anselin (1988) for a discussion on the finite sample properties of the IV estimator.
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& Raciborski (2013). Regression results for each of these estimators for the average
model are reported in table 4. The results indicate that GS2SLS is less efficient than
the ML.

[TABLE 4 HERE.]

As the spatial-weighing matrix is row-normalized the parameter space of λ is
(-1,1). The average peer effect estimate, indicated by λ, is 0.169 and insignificant in
the GS2SLS case with network fixed effects (table 4, column (2)), whereas strongly
significant when using the ML estimator. Thus, in both cases the peer effect estimate
is positive and of moderate size. Column (3) reports the ML results for the aggregate
model and the peer effect is highly significant and positive, 0.054 (p<0.01). The
aggregate model GS2SLS results are found in column (4). The estimate 0.125 is
significant (p<0.01) but the instrument is invalid (as discussed above). All in all, the
results suggest that individual disruptiveness is affected by friends’ disruptiveness
and that the average peer effect model explains the data best.

Table 4 indicate that in all specifications (columns (1)-(4)) the sign and signif-
icance of the individual covariates are consistent. In contrast to the OLS results
in table 3, some of the average characteristics of friends are significant. Friends’
average language and cognitive test scores are negatively related to individual dis-
ruptiveness. In line with expectations, friends’ average age is positively related to
the outcome variable. Since the model includes spatial lags of the dependent vari-
able the interpretation is less straightforward than in the linear model case. The
interpretation of the coefficients for the independent variables are discussed further
below.

The two final candidates are the average model and the aggregate model esti-
mated using ML. As a robustness test I compare the Log Likelihood of the average
and the aggregate model and they turn out to be almost equal.36 I continue with the
average model since it produces a significant and non-negligible peer effect estimate
and is the model that explains the data best as suggested by the results in tables 3
and 4.

Next, I turn to the link formation process reported in table 5. The number of
possible links is nearly 18 million. The predictors include the absolute difference
in scores on the language test, the difference in scores on the cognitive ability test,
male dummy (1=both individuals are male), native dummy (1=both individuals
are native-born) and the absolute difference in age.37 The exclusion restriction

36The Log Likelihood for the average model and aggregate model is -9156 and -9159 respectively.
37Due to the high non-response rate of both students and parents regarding the parents’ occu-

pation I leave out the absolute difference in the highest occupational status of the parents as an
explanatory variable in the link formation process.
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in the model is an indicator for living within a 5 minute walking distance from
a classmate. The geographical proximity variable affects the probability of two
individuals forming a friendship tie but not the individual decision to disrupt and
should therefore be a valid instrument for link formation. The indicator variable is
excluded from the second stage, i.e. the outcome equation.

For the time being, I assume that the errors are following a normal distribution
and that they are independent (although there is room to reconsider this). The
selection equation is estimated by OLS and the residuals are added up with respect
to each individual. Recall that the control function is estimated at the dyad level
while the outcome model is at the individual level.

Evidence of the non-randomness in link formation is displayed in table 5. Unsur-
prisingly, geographical proximity seems to be an important predictor of friendship
ties. The estimates reflect probabilities and the coefficient for “5 min distance” is
significant and non-negligible. Language and cognitive ability test scores and nativ-
ity seem to also be driving friendship formation. The larger the absolute difference
in test scores of two individuals the less likely they are to be friends. Homogeneity in
terms of region of origin also makes two individuals more likely to form a friendship
link.

[TABLE 5 HERE.]

Table 6 reports the outcome equation, namely equation (12) including the selec-
tion correction term. Neither the magnitude nor the significance of the peer effect
changes by including the selection bias. Furthermore, the size of the standard errors
remains unchanged. A plausible explanation for this result is that link formation is
as good as random after controlling for sorting using individual and friendship char-
acteristics.38 Overall the other estimates (and their standard errors) remain fairly
unaffected by including the selectivity bias term which suggests that conditional
exogeneity holds and that the peer effect can be interpreted in causal terms. Hence,
the peer effect estimate that I will use in the key player analysis is 0.167. The pre-
ferred model, the average peer effect model, indicates that individual disruptiveness
is positively related to the average disruptiveness of best friends.

[TABLE 6 HERE.]

6.2 Interpretation of estimates

The interpretation of the estimates in table 6 is less straightforward than in the OLS
case presented in table 3. One way to interpret the coefficients for the independent

38See discussion in Del Bello et al. (2015).
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variables is to calculate the predicted values at different levels of the dependent
variables, as suggested by for example Drukker, Prucha & Raciborski (2013). Due
to the built-in simultaneity of the model (SARAR), a change in the dependent
variable of one individual can alter the predicted values of all other individuals in
the sample. Either the units of the exogenous variable are changed sequentially
(average total direct impact, ATDI) or simultaneously (average total impact, ATI).
I calculate the predictions using the simultaneous approach. The mean change in
the predictions from increasing the individual cognitive ability score by one point
is -.0444. The ATI corresponds to about 2.0 percent of a standard deviation in
individual disruptiveness (demeaned).39 The estimated ATI from a one unit change
in the individual language test score is -.0224 which corresponds to circa 1.0 percent
of a standard deviation in individual disruptiveness.

6.3 Key player simulation

In this section, I proceed by identifying the key player using the concepts presented
in section 3. The analysis that follows is based on the average model of peer effects.
The estimated peer effect of the average model reported in column (4) in table 6 is
positive and statistically significant (0.167, p<0.01).

First, I derive the Katz-Bonacich measure along with the intercentrality (as
defined in equation (8)) of each individual using the estimated peer effect of 0.167.
I next use all the estimated coefficients in the average model reported in table 6,
to derive the disruptive ability ai of each individual in the network. As defined in
equation (2), ai depends on individual observable attributes, the average observable
characteristics of one’s friends and the total number of friends. I plug each ai into
the expression (6) and derive the vector of Nash equilibrium disruptiveness levels
which corresponds to the Katz-Bonacich of each individual (see Definition 1).

The final part of the exercise involves identifying the key player, i.e. the optimal
target. This is done by calculating the intercentrality of all individuals in each
network. The key player is the individual with the highest intercentrality. Clearly,
the number of key players is the same as the number of networks which is 374.
Networks with less than three members have been removed from the key player
analysis which leaves us with a total of 329 networks in the analysis sample. Also,
the number of most active players is larger than the number of networks since more
than one player could have the same level of disruptiveness.

39When presented in percentage terms and the denominator is the sample average of individual
disruptiveness the absolute ATI from increasing individual cognitive ability by one point corre-
sponds to a very large number. This is because all variables in the preferred specification have
been demeaned at the network level and therefore consist of both positive and negative values
(including individual disruptiveness).
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By definition, key players hold important positions in their network and may
act as bridges of both desirable and undesirable behavior.40 The key player is not
necessarily the most active individual in the network. In fact, the key player and
the most active individual is the same person in only 28 out of 329 networks (about
8.5 percent). Table 7 shows the observable characteristics of the key player and the
most active player. Column (1) reports the results from a logistic regression of a
dummy variable, indicating whether an individual is the key player or not, on a
selected set of observable characteristics such as gender and parents’ immigration
background. Column (2) displays the corresponding regression results for the most
active player.

According to the results in table 7, the log of odds of a being the key player
is positively related language test scores (p<0.01) and cognitive ability test scores
(p<0.01). In other words, the higher the test scores, the more likely it is that an
individual is the key player.

The odds ratio of 1.141 indicates that boys are 1.141 times more likely to be
the key player but the estimate is insignificant. Thus, I do not find evidence in
support of the notion that the key player is more likely to be a boy than a girl;
given the same language and cognitive ability test scores, HISEI, age and parents’
immigration status, boys are not more likely to be the key player than girls. This
seems also be the case for the most active player. Moreover, having two native-born
parents is negatively related to one being the key player and positively related to
being the most active player (both however insignificant). The log of odds of a being
the most active player is negatively related to cognitive ability test scores (p<0.10).

[TABLE 7 HERE.]

Next, following the analysis employed in Lindquist & Zenou (2014), I investigate
the percentage reduction in disruptiveness from removing the key player, calculated
as the intercentrality of the key player times 100 divided by the total Bonacich of that
network. I run an OLS regression of this value on a constant and the independent
variable network size. The results of these regressions are shown in table 8. I do the
same for the most active player and a random player.

[TABLE 8 HERE.]

Table 8 reports the predicted reductions without any baseline. The average
reduction in disruptiveness for the average network (size=16) from removing the

40Bridges have high betweenness centrality.
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key player is roughly 13.2 percent compared to removing the most active player
which is about 11.9 percent.41

In table 9 the baseline is the most active player or a random player. This
approach produces estimates of the performance of the key player strategy relative
to other policies such as targeting the most disruptive individual. In the first column
of table 9 the dependent variable is the difference in the percentage reduction in
disruptiveness from removing the key player compared to removing a random player.
In column (2) the dependent variable is the reduction relative the most active player.
Networks where the key player and the most active individual or a random player
is the same person have been removed from the analysis in table 9 which is why the
sample sizes are different in columns (1) and (2).

[TABLE 9 HERE.]

The intercept gives an indication of how much the key player strategy out-
performs the other two policies. The key player strategy outperforms the other
strategies to a significant extent, although the difference is small: the average re-
duction in disruptiveness for the average network (size=13.1) from removing the
key player is 1.41 percent higher than removing a random player and 1.44 percent
higher (size=12.9) than removing the most active player. The estimate of network
size is as one would expect negative in both cases.42 Table 9 shows the relationship
between the average predicted reduction and network size. A one point increase in
the number of network members is, on average, associated with a 9.7 percentage
point decrease in the difference in the average reduction in aggregate disruptiveness.

In summary, the effect of removing the key player is significantly larger than
removing the most active player thus removing the most active player is not nec-
essarily the most effective way of lowering aggregate disruptiveness in the network.
The difference in the predicted percentage reduction in disruptiveness is however
relatively small. Furthermore, the predicted reduction is negatively related to net-
work size which is a mechanical property: removing the key player (or actually any
player) in a smaller network will have a larger effect than in a bigger one.

41The sample size is the same in all three models since the key player and the most active or
random player is allowed to be the same individual.

42The number of networks in both column (1) and (2) is less than 374 since the networks in
which the key player and a randomly chosen player coincide are removed from the analysis. The
same applies to the case when the key player is also the most active player in the network. Also,
as previously mentioned, networks with less than three members are excluded from the key player
analysis.
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7 Discussion
A deeper understanding of how and when peer effects influence adolescent behavior
could help both researchers and policy makers create effective policy interventions in
education (e.g. how to organize teaching and classrooms optimally) and adolescent
risk behavior (e.g. how to reduce delinquent behavior). Should policy be aimed
at changing the context (teachers, resources etc.) or the composition of students?
Should teachers target the most active individual, i.e. the one making the most
noise, or perhaps the most popular individual such as the key player?

Different classroom situations can bring about different behaviors, as noted by
McFarland (2001): “changing either the student or the classroom would change the
decision to rebel” (p. 617). Disruption could be rectified through organizational
changes of the classroom, for example by altering the formats of instruction or the
grouping of students.43 That said, changing classroom size (teacher/student ratio)
or introducing remedial classes could be costly compared to altering the groupings
of students. The implementation of a policy that changes the configuration of class-
room networks of students resistant to learning can prove to be less expensive than
other policies and the potential gains could be substantial.

The optimal target for treatment hinges on the underlying behavioral mechanism
of disruptive conduct. I find that the average model fits the data best suggesting
group-based policies should be more effective than policies aimed at specific indi-
viduals. Thus, in order to reduce aggregate disruptiveness the social norm – the
behavior of the majority in each network– needs to be changed.

I also find that the key player and the most active individual is the same person
in 28 out of 329 networks (approximately 8.5 percent). I find evidence that remov-
ing the key player has a significantly larger effect on aggregate disruptiveness in a
network than removing the most disruptive individual implying policy aimed at the
most noisy individual could be inadequate. However, the difference in the predicted
percentage reduction in disruptiveness is small.

Improving the behavior of the worst-behaved (most active) students clearly has
a positive effect on other students in the classroom because of the social multiplier.
Targeting the most active individuals is likely less demanding than aiming policy at
key players. In practice it could be difficult to target key players since they are not
as easily identified (compared to the most noisy individuals). An alternative strat-
egy is to “reshuffle” classrooms every semester or school year, thereby potentially
changing the classroom norm. A drawback of this approach is that positive spillovers
from advantaged to disadvantaged peers could be lost by reorganizing classrooms
randomly.

43Educators can alter the grouping of student either by mixing, matching or random assignment.
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A related question is whether to mix or match students according to specific
observable characteristics such as grades. The seminal paper of Lazear (1999) derives
optimal class size from a model of educational production that incorporates the
disruptive behavior of students in the classroom. Lazear (1999) finds that the effect
of classroom size is larger for disruptive than obedient children. From a cost-benefit
point of view, reducing the class size by a small number of students may not matter
much for individual behavior when the class sizes are relatively large.44 In Sweden,
students often have the same classmates all through the last years of compulsory
school hence classroom networks are fairly stable which leaves room for policy on
classroom composition.

Are some classroom environments more likely to facilitate or inhibit aggregate
disruptiveness? The question opens up new avenues of research on classroom compo-
sition and learning environment. Rules on classroom interaction vary across schools
and classrooms.45 Future research could investigate the relationship between the
structure of classrooms and specific adolescent undesirable (or desirable?) behav-
iors. Do classrooms where individuals sort around the most disruptive student stand
out in some observable way, for example with respect to density? If so, what makes
students in these types of classrooms more susceptible to disruptive conduct? Are
the externalities from bad apples larger in dense classrooms? One possibility is to use
popularity ranking in the classroom or negative nominations and examine teacher
characteristics closer (available in CILS4EU). The next step is to also examine the
effect of disruptiveness on individual achievement such as school grades and later
educational outcomes.

Finally, this study has a number of limitations that should be mentioned. First,
since students who were absent on the day of the network questionnaire or who
refused to participate were excluded from the class roaster and the set of potential
friend nominees, there is a risk that I underestimate the effect of friends’ disruptive-
ness and the effect of removing the key player (unless these individuals are isolated).
As shown in table B1 in Appendix B.2, the cases dropped from the analysis sample
due to non-response are more likely to have higher scores on the disruptive measure
while lower on the language and cognitive ability tests implying that the analysis
sample is positively selected on these characteristics.

Second, a disadvantage of the CILS4EU data is that it is based on individuals’
self-reports of problem behavior. Ideally one would like to have data on disrup-
tive behavior collected through classroom observations over time. Furthermore, an

44In fact, evidence is inconclusive about the effect of class size on student performance. See
discussion in e.g. Hanushek (2002).

45Group sizes are important. See for example McFarland et al. (2014), Roman (2016) and Frank
et al. (2013).
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important question concerns the nature and level of measurement error in the self-
reported variables. Is it systematic or random, i.e. do disruptive students tend to
misreport their behavior to a larger extent than others? This and related issues
could be investigated further using the teacher questionnaire in CILS4EU.46

8 Concluding remarks
This paper set out to investigate the peer effect in disruptive behavior using the
architecture of the networks in the classroom and to move towards a policy-relevant
application of the key player strategy. I find that being the individual that exerts
the greatest negative influence on the classroom learning environment is positively
related to test scores in cognitive ability and language proficiency. Moreover, the
key player is not more likely to be a boy than a girl. I also find evidence that
removing the key player has a significantly larger effect on aggregate disruptiveness
in a network than removing the most disruptive individual implying policy aimed
at the most active and potentially socially isolated individual could be inadequate.

The findings of this study have implications for educational policy on optimal
classroom composition. The impact of a policy aimed at key players may prove to
be more effective in reducing aggregate disruptiveness and improving the learning
environment for all students in a classroom. I suggest a reshuffling policy where
students are reassigned to classrooms regularly during the school year along with
remedial classes for the most disruptive students.

46The sociological study of McFarland (2001) is based on classroom observations of two schools
and 36 classrooms followed during two school semesters.

30



References
Angrist, J. D. (2014), ‘The perils of peer effects’, Labour Economics 30, 98–108.

Anselin, L. (1988), Spatial Econometrics: Methods and Models, Vol. 4, Springer
Science & Business Media.

Arai, M., Schröder, L. & Vilhelmsson, R. (2000), ‘En svartvit arbetsmarknad: en
ESO-rapport om vägen från skola till arbete: Rapport till expertgruppen för
studier i offentlig ekonomi’.

Arduini, T., Patacchini, E., Rainone, E. et al. (2015), Parametric and semipara-
metric IV estimation of network models with selectivity, Working paper, Einaudi
Institute for Economics and Finance (EIEF).

Ballester, C., Calvó-Armengol, A. & Zenou, Y. (2006), ‘Who’s who in networks.
Wanted: The key player’, Econometrica 74(5), 1403–1417.

Ballester, C. & Zenou, Y. (2014), ‘Key player policies when contextual effects mat-
ter’, The Journal of Mathematical Sociology 38(4), 233–248.

Ballester, C., Zenou, Y. & Calvó-Armengol, A. (2010), ‘Delinquent networks’, Jour-
nal of the European Economic Association 8(1), 34–61.

Bifulco, R., Fletcher, J. M. & Ross, S. L. (2011), ‘The effect of classmate charac-
teristics on post-secondary outcomes: Evidence from the Add Health’, American
Economic Journal: Economic Policy 3(1), 25–53.

Black, S. E., Devereux, P. J. & Salvanes, K. G. (2013), ‘Under pressure? The effect of
peers on outcomes of young adults’, Journal of Labor Economics 31(1), 119–153.

Bonacich, P. (1987), ‘Power and centrality: A family of measures’, American journal
of sociology 92(5), 1170–1182.

Borgatti, S. P. (2003), The key player problem, in K. M. C. Ronald Breiger &
P. Pattison, eds, ‘Dynamic Social Network Modeling and Analysis: Workshop
Summary and Papers’, National Academy of Sciences Press, pp. 241–252.

Borgatti, S. P. (2006), ‘Identifying sets of key players in a network’, Computational,
Mathematical and Organizational Theory 12(1), 21–34.

Boucher, V. & Fortin, B. (forthcoing), ‘Some challenges in the empirics of the effects
of networks’, Oxford Handbook on the Economics of Networks, Oxford: Oxford
University Press .

Bramoullé, Y., Djebbari, H. & Fortin, B. (2009), ‘Identification of peer effects
through social networks’, Journal of econometrics 150(1), 41–55.

Calvó-Armengol, A., Patacchini, E. & Zenou, Y. (2009), ‘Peer effects and social
networks in education’, The Review of Economic Studies 76(4), 1239–1267.

31



Calvó-Armengol, A. & Zenou, Y. (2004), ‘Social networks and crime decisions: The
role of social structure in facilitating delinquent behavior’, International Economic
Review 45(3), 939–958.

Carrell, S. E., Hoekstra, M. & Kuka, E. (2016), The long-run effects of disruptive
peers, Technical report, National Bureau of Economic Research.

Carrell, S. E. & Hoekstra, M. L. (2010), ‘Externalities in the classroom: How chil-
dren exposed to domestic violence affect everyone’s kids’, American Economic
Journal: Applied Economics 2(1), 211–228.

Del Bello, C. L., Patacchini, E. & Zenou, Y. (2015), Neighborhood effects in educa-
tion, Technical report.

Drukker, D. M., Peng, H., Prucha, I. R., Raciborski, R. et al. (2013), ‘Creating and
managing spatial-weighting matrices with the spmat command’, Stata Journal
13(2), 242–286.

Drukker, D. M., Prucha, I. & Raciborski, R. (2013), ‘Maximum likelihood and
generalized spatial two-stage least-squares estimators for a spatial-autoregressive
model with spatial-autoregressive disturbances’, Stata Journal 13(2), 221–241.

Elhorst, J. P. (2010), ‘Applied spatial econometrics: raising the bar’, Spatial Eco-
nomic Analysis 5(1), 9–28.

Frank, K. A., Muller, C. & Mueller, A. S. (2013), ‘The embeddedness of adoles-
cent friendship nominations: The formation of social capital in emergent network
structures 1’, American Journal of Sociology 119(1), 216–253.

Fruehwirth, J. C. (2013), ‘Identifying peer achievement spillovers: Implications for
desegregation and the achievement gap’, Quantitative Economics 4(1), 85–124.

Goldsmith-Pinkham, P. & Imbens, G. W. (2013), ‘Social networks and the identifi-
cation of peer effects’, Journal of Business & Economic Statistics 31(3), 253–264.

Gould, E. D., Lavy, V. & Daniele Paserman, M. (2009), ‘Does immigration affect
the long-term educational outcomes of natives? Quasi-experimental evidence’,
The Economic Journal 119(540), 1243–1269.

Graham, B. S. (2015), ‘Methods of identification in social networks’, Annu. Rev.
Econ. 7(1), 465–485.

Hahn, Y., Islam, A., Patacchini, E. & Zenou, Y. (2015), Teams, organization and
education outcomes: Evidence from a field experiment in Bangladesh, Technical
report.

Hanushek, E. A. (2002), ‘Evidence, politics, and the class size debate’, The class
size debate pp. 37–65.

Hardin, J. W. et al. (2002), ‘The robust variance estimator for two-stage models’,
Stata Journal 2(3), 253–266.

32



Heath, A. & Brinbaum, Y. (2014), Unequal Attainments: Ethnic educational in-
equalities in ten Western countries, Oxford University Press.

Heckman, J. et al. (2013), ‘Sample selection bias as a specification error’, Applied
Econometrics 31(3), 129–137.

Hjalmarsson, S. & Mood, C. (2015), ‘Do poorer youth have fewer friends? The role
of household and child economic resources in adolescent school-class friendships’,
Children and Youth Services Review 57, 201–211.

Hoxby, C. (2000), Peer effects in the classroom: Learning from gender and race
variation, Technical report, National Bureau of Economic Research.

Hoxby, C. M. & Weingarth, G. (2005), Taking race out of the equation: School
reassignment and the structure of peer effects, Working paper.

Hsieh, C.-S. & Lee, L. F. (2016), ‘A social interactions model with endogenous
friendship formation and selectivity’, Journal of Applied Econometrics 31(2), 301–
319.

Jonsson, J. O. & Rudolphi, F. (2011), ‘Weak performancestrong determination:
school achievement and educational choice among children of immigrants in swe-
den’, European Sociological Review 27(4), 487–508.

Kalter, F., Heath, A. F., Hewstone, M., Jonsson, J., Kalmijn, M., Kogan, I., Van Tu-
bergen, F., Kroneberg, C., Andersson Rydell, L., Brolin Låftman, S. et al. (2013),
‘Children of immigrants longitudinal survey in four European countries, GESIS
data archive, Cologne, za5656 data file version 1.2.0’.

Katz, L. (1953), ‘A new status index derived from sociometric analysis’, Psychome-
trika 18(1), 39–43.

Kelejian, H. H. & Prucha, I. R. (1998), ‘A generalized spatial two-stage least squares
procedure for estimating a spatial autoregressive model with autoregressive dis-
turbances’, The Journal of Real Estate Finance and Economics 17(1), 99–121.

Kristoffersen, J. H. G., Krægpøth, M. V., Nielsen, H. S. & Simonsen, M. (2015),
‘Disruptive school peers and student outcomes’, Economics of Education Review
45, 1–13.

Kruse, H. & Konstanze, J. (2016), Children of immigrants longitudinal survey in
four European countries. Sociometric fieldwork report. Wave 1 2010/2011, v1.2.0.
Mannheim, Technical report, Mannheim University.

Lavy, V. & Schlosser, A. (2007), Mechanisms and impacts of gender peer effects at
school, Technical report, National Bureau of Economic Research.

Lazear, E. P. (1999), Educational production, Technical report, National bureau of
economic research.

33



Lee, L.-f. (2003), ‘Best spatial two-stage least squares estimators for a spatial
autoregressive model with autoregressive disturbances’, Econometric Reviews
22(4), 307–335.

Lee, L.-f., Liu, X. & Lin, X. (2010), ‘Specification and estimation of social interaction
models with network structures’, The Econometrics Journal 13(2), 145–176.

Lindquist, M. J., Sauermann, J. & Zenou, Y. (2015), Network effects on worker
productivity, Working paper.

Lindquist, M. J. & Zenou, Y. (2014), Key players in co-offending networks, Working
paper.

Liu, X. & Lee, L.-f. (2010), ‘GMM estimation of social interaction models with
centrality’, Journal of Econometrics 159(1), 99–115.

Liu, X., Patacchini, E. & Zenou, Y. (2014), ‘Endogenous peer effects: local aggregate
or local average?’, Journal of Economic Behavior & Organization 103, 39–59.

Manski, C. F. (1993), ‘Identification of endogenous social effects: The reflection
problem’, The review of economic studies 60(3), 531–542.

McFarland, D. A. (2001), ‘Student resistance: How the formal and informal orga-
nization of classrooms facilitate everyday forms of student defiance’, American
Journal of Sociology 107(3), 612–678.

McFarland, D. A., Moody, J., Diehl, D., Smith, J. A. & Thomas, R. J. (2014),
‘Network ecology and adolescent social structure’, American sociological review
79(6), 1088–1121.

McPherson, M., Smith-Lovin, L. & Cook, J. M. (2001), ‘Birds of a feather: Ho-
mophily in social networks’, Annual review of sociology 27(1), 415–444.

Murphy, K. M. & Topel, R. H. (1985), ‘Estimation and inference in two-step econo-
metric models’, Journal of Business & Economic Statistics 3(4), 370–379.

Patacchini, E., Rainone, E. & Zenou, Y. (2016), ‘Heterogeneous peer effects in
education’, Journal of Economic Behavior & Organization .

Raven, J. J. (2003), Raven progressive matrices, in ‘Handbook of nonverbal assess-
ment’, Springer, pp. 223–237.

Roman, S. (2016), Friendship Dynamics Among Adolescents, PhD thesis, Depart-
ment of Sociology, Stockholm University.

Sacerdote, B. et al. (2011), ‘Peer effects in education: How might they work, how
big are they and how much do we know thus far?’, Handbook of the Economics of
Education 3(3), 249–277.

Tatsi, E. (2015), Endogenous social interactions: Which peers matter?, Working
paper.

34



Wasserman, S. & Faust, K. (1994), Social network analysis: Methods and applica-
tions, Vol. 8, Cambridge university press.

Wooldridge, J. M. (2015), ‘Control function methods in applied econometrics’, Jour-
nal of Human Resources 50(2), 420–445.

Zenou, Y. (2016), Key players, in A. G. Yann Bramoullé & B. Rogers, eds, ‘Oxford
Handbook on the Economics of Networks’, Oxford University Press.

35



Figure 1: Distribution of degree centrality in the Swedish classroom data. N=4219.
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Table 1: Individual level summary statistics.

Variable Mean Std. Dev. Min. Max. N
Demographics
Male 0.486 0.5 0 1 4219
Highest index of occupational status 52.982 20.35 11.74 88.960 4219
Native background 0.677 0.468 0 1 4219
Age 15.029 0.264 13 17 4219
Language test scores 18.654 4.949 0 29 4219
Cognitive ability test scores 17.812 4.751 0 27 4219
Delinquent behavior (1=Never, 5=Every day)
Arguing with teacher 4.435 0.837 1 5 4209
Getting punished 4.666 0.635 1 5 4204
Skipping school 4.637 0.719 1 5 4196
Late to school 3.9 1.037 1 5 4199
Disruptiveness measure 6.362 2.433 4 20 4219

Notes: Summary statistics on demographics and academic outcomes for the analysis sample
and delinquent behavior variables for the full sample.
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Figure 2: Distribution of disruptiveness. N=4219.
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Table 2: Network characteristics.

Variable Mean Std. Dev. Min. Max.
Network size 15.953 5.92 3 28
Degree 4.433 1.652 1 13
Radius 2.631 0.852 1 4
Eigenvalue 0.571 0.331 0 1
Bonacich 10.3 1.068 7.538 14.977
Betweenness 0.086 0.13 0 1

Notes: Networks with less than three members have been
removed from the key player simulation.
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Figure 3: Distribution of network size. N=374.
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Figure 4: A classroom network of 27 students (undirected links).
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Table 3: Alternative models of peer effects estimated by OLS.

Average model Aggregate model Hybrid model Average model

(1) (2) (3) (4) (5)

Dependent variable: Disruptiveness

Intercept 4.39∗∗∗ 5.92∗∗∗ 4.38∗∗∗ 3.54
(0.23) (0.12) (0.23) (4.39)

Average peer effect 0.31∗∗∗ 0.31∗∗∗ 0.30∗∗∗ −0.10∗

(0.04) (0.04) (0.04) (0.06)
Aggregate peer effect 0.02∗∗∗ 0.00

(0.00) (0.00)
Language test scores −0.03∗∗∗ −0.02∗∗

(0.01) (0.01)
Cognitive ability test scores −0.04∗∗∗ −0.04∗∗∗

(0.01) (0.01)
Male 0.24∗∗ 0.17

(0.10) (0.11)
Highest index of occupational status −0.00 −0.00

(0.00) (0.00)
Native 0.18∗ 0.18

(0.10) (0.12)
Age 0.15 0.17

(0.16) (0.15)
Missing values: HISEI 0.41∗∗ 0.49∗∗

(0.18) (0.20)
Friends’ average language test scores 0.01 0.02

(0.02) (0.02)
Friends average cognitive test scores −0.00 −0.04

(0.02) (0.02)
Proportion male friends −0.21 −0.04

(0.13) (0.15)
Friends’ average HISEI 0.00 −0.01∗

(0.00) (0.00)
Proportion native friends −0.07 0.09

(0.15) (0.23)
Friends’ average age −0.02 −0.12

(0.27) (0.35)

Network fixed effects NO NO NO NO Y ES
Observations 4219 4219 4219 4219 4219
Adj. R2 0.04 0.01 0.04 0.05 0.14

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
Notes: Columns (1)-(3) report the baseline estimates for the average, the aggregate model and the hybrid model of peer
effects. Columns (4) and (5) present the results from OLS estimations of the average model including covariates. In
column (5) network fixed effects are included. Standard errors are clustered at the network level in all models.
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Table 4: The average and the aggregate model of peer effects in disruptive behavior
estimated by ML and GS2SLS.

Average model Aggregate model

ML G2SLS ML G2SLS
(1) (2) (3) (4)

Dependent variable: Disruptiveness

Language test scores -0.0186** -0.0185* -0.0190** -0.0142
(0.00890) (0.0102) (0.00891) (0.00942)

Cognitive ability test scores -0.0370*** -0.0370*** -0.0368*** -0.0348***
(0.00865) (0.00878) (0.00866) (0.00874)

Age 0.208 0.208 0.206 0.193
(0.133) (0.134) (0.133) (0.134)

Male 0.0474 0.0471 0.0486 0.0306
(0.150) (0.151) (0.150) (0.150)

Native background 0.220** 0.219** 0.234** 0.224**
(0.0986) (0.102) (0.0986) (0.0987)

Highest index of occupational status -0.00164 -0.00164 -0.00161 -0.00173
(0.00186) (0.00186) (0.00186) (0.00186)

Missing HISEI 0.417*** 0.417*** 0.423*** 0.407***
(0.147) (0.148) (0.147) (0.147)

Friends’ average language test scores -0.0595*** -0.0593*** -0.0603*** -0.0496***
(0.0156) (0.0190) (0.0156) (0.0170)

Friends’ average cognitive test scores -0.0384** -0.0382* -0.0400*** -0.0283*
(0.0151) (0.0199) (0.0151) (0.0169)

Friends’ average age 0.0746** 0.0743* 0.0762** 0.0503
(0.0357) (0.0443) (0.0357) (0.0394)

Proportion male friends 0.0696 0.0693 0.0728 0.0581
(0.172) (0.172) (0.172) (0.172)

Proportion native friends 0.119 0.118 0.130 0.0774
(0.158) (0.170) (0.159) (0.162)

Friends’ average HISEI 1.46e-05 1.56e-05 0.000216 0.000563
(0.00327) (0.00327) (0.00327) (0.00328)

λ 0.167*** 0.169 0.0540*** 0.125***
(0.0182) (0.206) (0.00606) (0.0465)

σ2 4.460*** 4.468***
(0.0974) (0.0976)

Log-likelihood -9156.496 -9159.382
Observations 4,219 4,219 4,219 4,219
Network fixed effects YES YES YES YES

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: Columns (1) and (2) report the average model of peer effects estimated by ML
and GS2SLS while columns (3) and (4) report the aggregate model estimated by ML
and G2SLS aggregate model. All models include network fixed effects. Standard errors
are clustered at the network level.
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Table 5: Control function approach: Link formation model.

Link

Constant 0.00048∗∗∗

(0.00002)
Language test scores −0.00002∗∗∗

(0.00000)
Cognitive ability test scores −0.00001∗∗∗

(0.00000)
Male 0.00041∗∗∗

(0.00001)
Native 0.00056∗∗∗

(0.00001)
Age 0.00002

(0.00002)
5 min distance 0.52904∗∗∗

(0.00036)

R2 0.10928
Adj. R2 0.10928
Num. obs. 17799961

Standard errors in parentheses
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Notes: Results from OLS regression. The dependent
variable is a dummy indicating whether there is a friend-
ship link between two individuals. The explanatory
variables include the absolute difference in scores on
the language test, the difference in scores on the cogni-
tive ability test, male dummy (1=both individuals are
male), native dummy (1=both individuals are native)
and the absolute difference in age and finally whether
or not individuals live within a five min distance from
each other.
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Table 6: Outcome equation (OE) and link formation (LF).

OE OE and LF
(1) (2)

Dependent variable: Disruptiveness

Language test scores -0.0186** -0.0187**
(0.00890) (0.00890)

Cognitive ability test scores -0.0370*** -0.0370***
(0.00865) (0.00865)

Age 0.208 0.208
(0.133) (0.133)

Male 0.0474 0.0463
(0.150) (0.150)

Native background 0.220** 0.220**
(0.0986) (0.0986)

Highest index of occupational status -0.00164 -0.00165
(0.00186) (0.00186)

Missing HISEI 0.417*** 0.417***
(0.147) (0.147)

Friends’ average language test scores -0.0595*** -0.0594***
(0.0156) (0.0156)

Friends’ average cognitive test scores -0.0384** -0.0385**
(0.0151) (0.0151)

Friends’ average age 0.0746** 0.0751**
(0.0357) (0.0357)

Proportion male friends 0.0696 0.0701
(0.172) (0.172)

Proportion native friends 0.119 0.120
(0.158) (0.158)

Friends’ average HISEI 1.46e-05 1.78e-05
(0.00327) (0.00327)

Selectivity bias 8.05e-06
(1.46e-05)

λ 0.167*** 0.167***
(0.0182) (0.0182)

σ2 4.460*** 4.460***
(0.0974) (0.0974)

Observations 4,219 4,219
Network fixed effects YES YES

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: Column (1) reports the results from ML estimations of the av-
erage peer effect model with network fixed effects, the so-called the
outcome equation (OE). In column (2) the model also includes the es-
timated errors from the link formation model. The selectivity bias is
reported in column (2). Standard errors are clustered at the network
level.
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Table 7: Observable characteristics of the key player vs. the most active or a
random player.

(1) (2) (3)
Key player Most active player Random player

Language test scores 1.302∗∗∗ 0.988 1.020
(0.027) (0.014) (0.015)

Cognitive ability test scores 1.135∗∗∗ 0.977∗ 0.980
(0.022) (0.013) (0.013)

Male 1.144 1.271∗∗ 0.875
(0.141) (0.148) (0.102)

Highest index of occupational status 0.998 0.997 1.000
(0.003) (0.003) (0.003)

Native background 0.879 1.161 0.969
(0.151) (0.158) (0.132)

Age 1.099 1.156 1.099
(0.343) (0.244) (0.243)

HISEI missing 0.700 1.019 1.251
(0.190) (0.240) (0.274)

Observations 4129 4129 4129
Pseudo R2 0.184 0.006 0.002

Exponentiated coefficients; Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Results from logistic regressions.
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Table 8: Predicted reductions from removing the key player, the most active player
or a random player without any baseline.

(1) (2) (3)
Key player Most active player Random player

Network size (demeaned) -1.218*** -1.142*** -1.148***
(0.0416) (0.0404) (0.0418)

Constant 13.17*** 11.88*** 11.95***
(0.272) (0.264) (0.273)

Observations 329 329 329
R-squared 0.724 0.710 0.698

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: Results from OLS regressions of the percentage reduction in disruptiveness
from removing either the key player, most active or random player, calculated as the
intercentrality of that player times 100 divided by the total Bonacich of that network,
regressed on a constant and the independent variable network size.
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Table 9: Predicted reductions from removing the key player (KP) when he or she
is not the most active player (MA) or a random player (RP) in the network.

(1) (2)
Difference KP and RP Difference KP and MA

Network size (demeaned) -0.0973*** -0.0973***
(0.0120) (0.0138)

Constant 1.412*** 1.440***
(0.0780) (0.0881)

Observations 295 301
R-squared 0.183 0.144

Notes: Results from OLS regressions. The dependent variable in column (1) is the
difference in the average reduction in aggregate disruptiveness from removing the
key player compared to removing a random player while in column (2) it is the dif-
ference in the average reduction in aggregate disruptiveness from removing the key
player compared to removing the most active player.
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Appendices
A Data creation notes
CILS4EU is a multileveled survey containing rich information on the family, teacher,
school and classroom. It includes five sub-questionnaires directed at students,
parents and teachers, entitled “Parents”, “Teachers”, “Youth classmates”, “Youth
friends” and “Youth main”. The last three are directed towards students. The
network data in this paper is created using “Youth main” the “Youth classmates”
questionnaires. The number of respondents in the main questionnaire in the school
year 2010-2011 was 5,025.

The analysis is based on the full data set including 249 classrooms, although
sample restrictions could be considered in order to increase the proportion of par-
ticipants per classroom (see important discussion in Hjalmarsson & Mood (2015) on
CILS4EU classroom data). Figure A.1 shows the number of classroom if the sample
is conditioned with respect to the degree of participation.

Figure A.1: Share of participants and sample restrictions. Source: Kruse & Kon-
stanze (2016), Children of Immigrants Longitudinal Survey in Four European Coun-
tries. Sociometric Fieldwork Report. Wave 1 2010/2011, v1.2.0.

The full sample in the “Youth classmates” file consists of 4,794 individuals (249
classrooms and 129 schools). As a first step, I drop all individuals who have not
nominated anyone in the “Youth classmates” questionnaire (311 individuals). Based
on the reduced sample I then create an edgelist file including all pairs of friendships.

Table A1: Classroom characteristics, full sample

Variable Mean Std. Dev. Min. Max. N
Classroom size 20.353 4.287 6 31 4794

Next, I prepare the vertex file with all individual background variables including
classid, schoolid, male age, disruptiveness, native, and HISEI. In the following step,
I match the vertex file with a datafile with records of the students’ language and
cognitive ability test scores (4,804 observations). Individuals that performed the
language and cognitive ability tests but did not take part in the main questionnaire
were excluded (221 individuals in total). Individuals with missing values on HISEI
(272 cases) have been given the sample average. In all regressions that include the
HISEI variable I add a dummy for missing values on HISEI. I match the vertex file
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with the achievement file which leaves me with a total of 4,792 distinct cases. Next, I
merge the vertex file with the edgelist. Since there are more distinct observations of
“friends” (5,149 cases) than of “egos” (4,468 cases) I need to remove cases where egos
are not found among the friends. Thus, I remove the observations from the edgelist
file that contain an island among all the edges. In this step, 806 individuals are
excluded due to matching issues. The analysis sample consists of about 72 percent
of the total number of sampled students by CILS4EU.

Table A2: Classroom characteristics, analysis sample

Variable Mean Std. Dev. Min. Max. N
Classroom size 18.298 4.445 3 28 4219

The matrix analyses are done in Stata, Mata (sppack) and R. I use Stata to con-
struct the vertex file and the edgelist file which are then exported to R (gplot). In R,
I create the network data for the key player simulation. Due to implementation and
data memory issues the second stage estimations in the control function approach
are done in R. Robustness checks are performed in Stata and Mata (sppack).

B Robustness checks

B.1 Instruments and exclusion restriction
I perform a number of robustness checks in order to asses the validity of the instru-
ments and the exclusion restriction in the control function approach. Table B3 and
B4 reports the correlation between individuals’ characteristics and the average char-
acteristics of their friends in the classroom conditional and unconditional on their
5 minute distance neighborhood cluster. Several estimates are noticeably reduced
once I condition on the 5 minute distance variable.

B.2 Individual non-response
In order to estimate the network model, all isolated individuals (students with no
friendship nominations) must be dropped as by construction the adjacency matrix
cannot include missing values. As described in the data creation section A above,
I drop all individuals who have not nominated anyone in the “Youth classmates”
questionnaire (311 individuals). None of these “isolated” individuals filled in the
Main questionnaire hence I am unable to explore their observable characteristics.

To get an indication of the degree of non-random selection due to individual
non-response I investigate the characteristics of those excluded from the network
analysis, in total 806 individuals. I perform this test on the individuals that are not
matched with the edgelist file (those who did not take the language and cognitive
ability tests are not included since they have already been dropped). It is not
unlikely that these 573 individuals stand out in some way (non-random selection).
Being absent at the time of the survey could be an indication of school shirking
which is likely correlated with individual disruptiveness. I explore their observable
characteristics in the descriptives table B1 below.
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The cases dropped from the analysis sample are more likely male and have a
foreign-born background. They also have higher scores on the disruptive measure
while lower ones on the language and cognitive ability tests implying that the anal-
ysis sample is positively selected on these characteristics. With regard to the test
scores, the means are significantly different from each other. Since the dropped indi-
viduals also have, on average, statistically higher self-reported disruptiveness levels,
the estimated effect could be downward biased. The mean number of observations
per classroom in the analysis sample is roughly 18 (see table A2).
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Table B1: Observable characteristics, dropped individuals and the analysis sample

Variable Mean Std. Dev. Min. Max. N

PANEL A: Dropped individuals
Language test scores 15.515 5.829 0 30 573
Cognitive ability test scores 15.439 5.726 0 27 573
Age 15.122 0.387 14 17 573
Male 0.571 0.495 0 1 573
Disruptiveness 7.201 3.104 4 20 573
Native background 0.546 0.498 0 1 573

PANEL B: Analysis sample
Language test scores 18.654 4.949 0 29 4219
Cognitive ability test scores 17.812 4.751 0 27 4219
Age 15.029 0.264 13 17 4219
Male 0.486 0.5 0 1 4219
Disruptiveness 6.364 2.433 4 20 4219
Native background 0.677 0.468 0 1 4219
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Table B2: GJGX versus JGGX estimated using the Best IV approach.

GJGX JGGX
(1) (2)

Intercept 0.00 0.00
(0.04) (0.03)

Language test scores −0.03∗∗∗ −0.03∗∗∗

(0.01) (0.01)
Cognitive ability test scores −0.04∗∗∗ −0.04∗∗∗

(0.01) (0.01)
Male 0.24∗∗∗ 0.24∗∗∗

(0.08) (0.08)
Highest index of occupational status −0.00 −0.00

(0.00) (0.00)
Native 0.20∗ 0.20∗

(0.10) (0.10)
Age 0.11 0.10

(0.16) (0.17)
HISEI missing 0.45∗∗∗ 0.45∗∗∗

(0.16) (0.16)
Average language friends 0.02 0.02

(0.03) (0.03)
Average cognitive friends −0.00 −0.01

(0.04) (0.04)
Proportion male friends −0.19 −0.18

(0.17) (0.18)
Average HISEI friends −0.01 −0.01

(0.00) (0.00)
Proportion native friends 0.00 0.02

(0.24) (0.25)
Average age friends −0.19 −0.20

(0.33) (0.33)
Average HISEI missing −0.10 −0.09

(0.37) (0.37)

Local average peer effect 0.34 0.28
(0.55) (0.61)

R2 −0.05 −0.03
Adj. R2 −0.06 −0.04
Num. obs. 4219 4219
Wald test 5.962 6.057

Standard errors in parenthesis.
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Notes: Both column (1) and (2) include network fixed effects.
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Table B3: Correlation between an individual’s characteristics and the average
characteristics of one’s self-reported friends in the classroom unconditional on their
their 5 min distance neighborhood cluster.

Model 1 Model 2 Model 3 Model 4 Model 5

Intercept 9.11∗∗∗ 10.59∗∗∗ 0.25∗∗∗ 0.19∗∗∗ 13.73∗∗∗

(0.49) (0.50) (0.02) (0.01) (0.50)
Language test scores 0.51∗∗∗

(0.03)
Cognitive ability test scores 0.40∗∗∗

(0.03)
Male 0.49∗∗∗

(0.03)
Native 0.72∗∗∗

(0.02)
Age 0.09∗∗

(0.03)

R2 0.11 0.06 0.10 0.00 0.29
Adj. R2 0.11 0.06 0.10 0.00 0.29
Num. obs. 3253 3253 3253 3253 3253

Standard errors in parentheses
∗∗∗p < 0.001, ∗∗p < 0.05, ∗p < 0.1

Notes: Results from OLS regressions of an individual’s observable characteristics and the average char-
acteristic of his or her friends unconditional on the distance variable. For example Model 3 shows the
correlation between an individual’s gender and the average gender of one’s self-reported friends in the
classroom.
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Table B4: Correlation between individuals’ characteristics and average charac-
teristics of their friends in the classroom conditional on their their 5 min distance
neighborhood cluster.

Model 1 Model 2 Model 3 Model 4 Model 5

Language test scores 0.47∗∗∗

(0.03)
Cognitive ability test scores 0.39∗∗∗

(0.03)
Male 0.49∗∗∗

(0.03)
Native 0.70∗∗∗

(0.02)
Age 0.07∗∗

(0.03)

Num. obs. 3253 3253 3253 3253 3253
Adj. R2 0.14 0.08 0.10 0.30 0.02

Standard errors in parentheses
∗∗∗p < 0.001, ∗∗p < 0.05, ∗p < 0.1

Notes: Results from OLS regressions of an individual’s observable characteristics and the average char-
acteristic of his or her friends conditional on the distance variable. For example Model 3 shows the
correlation between an individual’s gender and the average gender of one’s self-reported friends in the
classroom.
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C Questionnaire items, CILS4EU
The Classmates questionnaire wave 1:

• (Q1) Who are your best friends in this class? (Here you may write down no
more than five numbers.)

• (Q9) Which of your classmates live within a 5 min walk from your home?

• (Q10) Who do your parents know?

Selected questions from the Main questionnaire wave 1:

• (Q20) How often do you... (Every day, Once or several times a week, Once or
several times a month, Less often, Never)

– ... argue with a teacher?
– ... get a punishment in school (for example being kept in detention, being

sent out of class, writing lines)?
– ... skip a lesson?
– ... come late to school?

• (Q81) Have you done the following things in past 3 months? Your answers
will be kept secret. (Yes, No)

– Deliberately damaged things that were not yours?
– Stolen something from a shop/from someone else?
– Carried a knife or weapon?
– Been very drunk?

• (Q93) How often do you... (Every day, Once or several times a week, Once or
several times a month, Less often, Never)

– ... drink alcohol?
– ... smoke cigarettes?
– ... use drugs (for example, hash, paddos, ecstasy pills)?

Source: Kalter et al. (2013).
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