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Abstract

Economists regularly regress IQ scores or achievement test scores

on covariates, for example to evaluate educational policy. These

test scores are ordinal measures, and their distributions can take

an arbitrary shape, even though they are often constructed to look

normal. The ordinality of test scores makes the use of mean-based

methods such as OLS is inappropriate: estimates are not robust to

changes in test score estimation assumptions and methods. I simulate

the magnitude of robustness problems, and show that in practice,

problems with mean-based regression of normally distributed test

scores are small. Even so, test score distributions with more exotic

shapes will need to be transformed before use.
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1 Introduction

Economists regularly regress measures of ability or achievement on covari-

ates, for example to evaluate educational policies or teacher performance (cf.

Lazear 2003, Todd and Wolpin 2003, Hanushek 2006). I will generally refer

to these measures as test scores. Examples of test scores range from cog-

nitive and noncognitive skill scores such as IQ scores, to school grades and

scores from large international surveys of educational achievement such as

PISA or TIMSS. Psychometric theory tells us that mean-based regression of

test scores is problematic, something which is often ignored in the economic

literature.

Ability and achievement cannot be measured directly, but must be estimated

in a two-step process. First, we must device a test which produces raw scores

containing information on the concept we are trying to measure. Then, we

must find a suitable function which maps raw scores into the reported test

scores. As will become clear further below, the result of this indirect measure-

ment is that we can never measure the underlying trait on a higher level than

the ordinal. This has not stopped test makes from reporting score distribu-

tions which look cardinal. Often, test makers try to create an approximately

normal score distribution, but as can be seen from Figure 1, test scores follow

a rather arbitrary distribution at times.

Because of the ordinality of test score data, conclusions drawn from mean-

based regression of test scores are not robust to changes in the choice of

either the test or the test score mapping. Changing these will give us a

similar ranking of students, but expressed in scores with different cardinal

values. In many cases, there exists a possible alternative set of values which

will lead to a change in regression coefficients large enough to invert their

sign.

A question separate from measurement is whether we consider the underly-

ing ability and achievement traits to be ordinal or cardinal. If we think of

them as ordinal, we do not only have robustness problems, but problems of

2



PISA US PISA Qatar PISA Belgium

NCDS reading age 7 NCDS reading age 16 NCDS math age 16

AFQT age 16 AFQT age 19 AFQT age 22

Figure 1: Test score distributions can take different shapes. Top row: weighted country
score distributions for PISA 2006 math scores (OECD 2006). Middle row: reading and
maths test scores for the NCDS (2010). Bottom row: weighted AFQT scores derived from
the ASVAB administered to the NLSY79 (2010) sample.

interpretation as well. Statements comparing averages of ordinal variables

are fundamentally meaningless.

In theory, both the problem of qualitative robustness and of meaning can

be solved by using methods fitting to ordinal data, such as quantile-based

methods. These methods do however add an additional layer of complexity

to the models commonly used in educational analysis, and the empiricist may

shy away from them in practice. Also, we would like to know how much trust

to place in the existing mean-based literature. Is it invalidated by the use of

wrong methods?
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I argue that as economists we have a clear cardinal interpretation of underly-

ing ability and achievement in the form of human capital. Even if this solves

the problem of interpretation, the robustness problem remains because we

cannot measure cardinal-level information. However, given that we inter-

pret test scores as a measure of human capital, we can derive bounds on the

extent of the problem by making assumptions on what would constitute a

reasonable shape of the human capital distribution.

On the basis of theory, we can expect underlying ability and achievement

to be either normal or lognormal. The normal is commonly used, but the

empirical labor market value of human capital seems to be lognormally dis-

tributed. The practical difference in using either distribution when the other

is appropriate is small. I illustrate this by calculating bounds for analyzes of

curriculum tracking – a policy for which the problems should be relatively

grave compared to other educational policies. I find that the variation in

the estimate of its effects are an order of magnitude smaller than the point

estimates, and that mean-based results are qualitatively robust.

Nevertheless, economists should be aware of the assumptions going into the

estimation of test scores. Score distributions with an arbitrary shape, such as

the distributions in the middle and bottom rows of Figure 1, should perhaps

be transformed into a normal or lognormal distribution if results are to be

interpretable and remotely comparable to other studies.

I advocate the use of quantile-based methods when analyzing test scores as

a robustness check for mean-based methods. Because the qualitative robust-

ness of mean-based analysis increases in the homogeneity of the estimated

effect, the cases in which mean-based comparisons are the least robust are ex-

actly the cases where quantile-based methods will yield the most interesting

results, and will be worthy to report in any case.
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2 Psychometric theory

Psychometricians have a long tradition of linking appropriate statistical meth-

ods to different kinds of data. A key insight is that all data are in essence

mappings of empirical phenomena onto some scale or another, and that the

choice of scale is to a certain degree arbitrary.

We want our statements to be qualitatively robust to changes in the mapping

from the empirical world onto the data scale. For example, we do not want

our qualitative conclusions to change when we map height into meters instead

of feet. A comparison of mean heights of adult men in England and France

should yield the same qualitative result as to which nation is the tallest in

either case. Comparing mean height is indeed robust as the empirically taller

nation will always have the larger mean height. By contrast, conclusions

based on the mean of an ordinal variable are not robust to the choice of

scale. Consider highest completed education. Using 1 for primary education,

2 for upper secondary education and 3 for tertiary education may or may

not give a different ordering of the English and French means compared to

using 9 for tertiary education instead of 3, even if (1, 2, 9) are just as good a

representation of the ordinal levels as are (1, 2, 3).

Stevens (1946) suggests a relatively easy way to determine when we will run

into robustness problems of the above kind. We group scales into four levels:

nominal, ordinal, interval and ratio, as can be seen from Table 1. We call

a certain statistic admissible for a level of scale when empirical conclusions

derived from it are robust to the use different scales within the level. Statistics

are always admissible on higher level scales than their own, and inadmissible

on lower levels.

A related but distinct problem is that of meaningfulness. We calculate statis-

tics on our data in order to learn something about the real, empirical world.

Statements on the data which bear no relationship to the empirical world,

are therefore not empirically meaningful (cf. Hand 2004, section 2.4.1). A

statement like “The mean completed education in England is 1.8.” makes no
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Scale Mapping Examples of variables Examples of admissible
statistics

Ratio x′ = ax income, coefficient of variation
(highest) age

Interval x′ = ax+ b school grade (i.e. year), mean,
calendar date variance

Ordinal x′ = f(x), level of education, median,
f() monotonically socioeconomic background other quantiles
increasing

Nominal x′ = f(x), gender, mode
(lowest) f() gives a one-to-one race,

relationship religion

Table 1: Admissible statistics for four different measurement levels, adapted from Stevens
(1946). Each measurement level inherits the admissible statistics from the levels below.

sense because it is not a statement on education in England as much as on

the mean of a vector of arbitrary numbers stored on our computer.

Meaningfulness and admissibility usually coincide, but there may be situa-

tions in which they do not (cf. Lord 1953, Zand Scholten and Borsboom 2009).

We could for example compare mean education in England and France, and

conclude that they are significantly different : that the English and French

samples are not likely to have been drawn from the same population. The

existence of a difference of the calculated means is dependent on the coding

of the variable, and thus not robust, nor is the mean the best way to quantify

this difference, but the conclusion that the religious composition of the two

countries differ is meaningful nevertheless.

Test scores are used as a measure of a variety of concepts. They are designed

to capture variables like intelligence or ability, proficiency at a certain task,

or learning. Below, I will refer to the underlying variable as ‘achievement’

even though the reasoning applies to other variables just as well.

Achievement cannot be observed directly, but must be estimated using some

kind of framework. These can be divided into two broad categories.

The simpler of the two is called Classical test theory or CTT. In CTT, the test

score is a linear transformation of the proportion of test items or questions
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answered correctly. This is the kind of scoring we perhaps remember from

our own time in school.

CTT is based on a true score model

x = t+ ε

where t is the true, underlying probability of the student answering questions

correctly, and x is the observed proportion of questions actually answered

correctly. The error ε arises because the number of questions is limited,

adding noise to the estimate. We use x as the estimate of t.

Test scores calculated using CTT are straightforward to interpret. The scores

are estimates of the proportion of questions a student would be expected to

answer correctly when given a similar test. Group averages of CTT scores

also have a clear interpretation: they are the proportion of questions the

group as a whole would be expected to answer correctly. We could thus

conclude that CTT scores are of ratio level, and we would be right to do so,

if there were just one possible relevant test.

The advantage of CTT is however at the same time its disadvantage. CTT

provides a score given a particular level of questions. The score distance

between two students is determined by the level of questions considered. If

the questions are very hard, almost no question will be answered correctly,

student scores will be massed against the lower 0% bound, and consequently,

the score distribution will have right skew (see Figure 2). Similarly, the score

distribution will have left skew when the questions are very easy. In the first

case, the score distances between low-scoring students become small, and

between high-scoring students they become large. The opposite happens in

the second case. (cf. Lord 1980, p. 50)

The difference in the skew of the score distribution affects our estimated mean

effects. If we were to compare means between a treatment and a control group

on the basis of the hard test, we would weight the right tail of the distribution

more heavily, whereas if we were to compare means on the basis of the easy

test, we would weight the left tail more.
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We can interpret CTT scores on a ratio level when speaking about a specific

test. We could for example use a change in achievement test scores to identify

that the average probability of answering correctly on a specific level of ques-

tions has increased. We cannot, however, generalize the result to the scores

obtained by a different achievement test, even if both tests are designed to

measure the same dimension of achievement. Also, we cannot make ratio-

level statements on the effect on the underlying trait. We cannot conclude

that ‘mean achievement’ has increased even if mean test scores have.

hard test easy test

Figure 2: Hard CTT tests produce a score distribution with right skew while easy tests
produce left skew.

An alternative to CTT is Item response theory, or IRT. IRT simultaneously

estimates student and question properties by fitting an item response function

which describes the probability of giving a specific response or answer to the

specific item or question the function refers to. Often, the response categories

are ‘right’ and ‘wrong’, and we get an item response function of the form

P(yij = 1) = cj +
1− cj

1 + e−aj(θi−bj)

This function is illustrated in Figure 3.

P(yij = 1) is the probability of student i answering question j correctly, θi is

the level of student achievement we are interested in, and bj is overall question
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difficulty. The inflexion point of the response function lies at bj = θi, and we

say that student achievement and question difficulty are equal at this point.

The limiting probability of answering the question correctly for extremely

low levels of achievement is given by cj. It can be interpreted as the proba-

bility of answering correctly when making an uninformed guess. The upper

probability limit is assumed to be one.

Question discrimination aj determines the rate at which students get better

at answering the question when they have a higher level of achievement. A

question which everyone answers equally well has zero discrimination. aj

may even turn negative if answering correctly on question j correlates nega-

tively with answering correctly on the others. Questions with low or negative

discrimination are however regularly discarded from test databases.

There are model variations where one or more item parameters are fixed

or otherwise restricted, mainly because there is relatively little information

contained in each response. When c is set to zero, and a to one, we obtain

the Rasch model. As is generally the case when c = 0, the inflexion point

bj = θi then lies at the level where the student is expected to answer the

question correctly with probability 0.5.

Figure 3: An item response function gives the probability of a student answering a certain
question correctly as a function of his achievement. Question parameters a (discrimina-
tion), b (difficulty) and c (guessing) are illustrated in the figure.
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IRT models remove much of the CTT models’ dependence on question dif-

ficulty. Score distances arise from the difficulty with which students answer

questions above and below their own level. If a student is answering questions

above his own level of achievement with relative ease, the distance θi − bj

must be relatively close to zero, just as when he does not do unusually well

on questions below his level.

In theory, we could even give some students easy questions and others hard

ones, and their results would still be comparable, albeit at the cost of test

efficiency. It would be tempting to think that IRT models therefore also

solve the CTT models’ ordinality problem, but unfortunately it returns in a

different guise.

Unlike CTT-scores, IRT student scores are not anchored to some absolute

measure. We can for example add a constant to the vectors θ and b and

arrive at the same model fit. In the same way, we could multiply θ and b

with a constant and divide a by it. The model is therefore unidentified if we

do not impose additional restrictions on the scores, for example by specifying

that the sample mean score equals zero, and its standard deviation one.

We can also change the higher moments of the distribution by estimating a

different functional form. The horizontal achievement and difficulty axis can

for example be transformed by θ∗ = k1e
k2θ, where k1 and k2 are constants,

so that both the item response functions and the distribution of θ and b are

stretched out in one tail and compressed in the other (Lord 1980, p. 85),

lending the score distribution arbitrary skew.

While CTT distances are a product of the particular test taken, IRT distances

depend on the equations which we use to map raw scores into test scores. In

both cases, we can reasonably change our methods, and obtain a test score

which follows a different distribution.

Given what we know about admissible statistics, meaningfulness, and the

process by which test scores are estimated, how should we deal with test

scores? Regression analysis is the comparison of means conditional on the

relevant variables. The sensibility of regressing test scores equals the sensi-

bility of a comparison of means.
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The question of meaningfulness boils down to whether we believe that there

exists an empirical phenomenon of underlying interval level achievement. If

there exists such a thing, score distances must be comparable across the

distribution. We must be able to accept that there exists an amount of un-

derlying improvement in the lower tail of the distribution which is equivalent

to a certain amount of improvement in the higher tail, that the failure of one

student to learn a certain skill can be exactly offset by the success of another

student at learning a different skill.

Whatever our thoughts on meaningfulness, the problem of robustness how-

ever remains. The cardinal values of test scores are arbitrary, and a change in

their values will cause a reweighting of observations. For example, in Figure

4, treatment has a positive effect in the right tail, but a negative effect in

the left. In the original data (top left panel), the positive effect outweighs

the negative, and the mean treatment effect is positive. In the normalized

version of the data however (bottom left panel), the right tail is given less

weight, and the mean treatment effect turns negative.

As can be seen from the right side of the figure, quantile regression is qual-

itatively robust in the sense that for each quantile, the estimated effect has

the same sign both in the true and in the normalized distribution.

In conclusion, both the problem of meaningfulness and of robustness can be

solved by using statistics of the ordinal level on test scores. A statement

like ‘the median student in the treatment distribution has higher achieve-

ment than the median student in the control distribution’ needs no cardinal

interpretation, and quantile-based methods are qualitatively robust. Psycho-

metric theory would discourage us from using mean-based analysis as it is

based on information we cannot actually measure.

3 Economic practice

The argument of admissible statistics for refraining from mean-based analy-

sis on test scores is the strongest if underlying achievement is fundamentally
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Figure 4: If the true distribution (top left panel) differs from the imposed one (bottom
left panel), this may lead to qualitatively wrong conclusions when comparing distribution
means. In this case, the treatment distribution (dashed lines) has a higher mean in the
original data, but appears to have a lower mean after normalization. It should be noted
that quantile-based methods (right panels) are qualitatively robust, with a negative effect
on all quantiles below about 0.6, and a positive effect on all quantiles above.

ordinal. As economists, we may however feel that it is cardinal because we

have a cardinal interpretation of achievement readily available to us: human

capital (cf. Hanushek 2006, section 2). While it may seem questionable to

state that one student has twice as much ‘achievement’ or ‘intelligence’ com-

pared to another, saying that he has twice as much human capital makes

more sense.

Even if the underlying variable is cardinal, its measurement will still be ordi-

nal. We can try to solve this by imposing assumed distributional forms onto

our ordinal measurements, and hope that they approximate the underlying

reality. If we happen to choose the correct form, all will be well, but the

more wrong we are, the more our empirical results will tend to differ from

the true relationship.
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The use of ordinal methods guards against true distributional forms that are

arbitrarily different from the assumed distribution, but we may feel that this

is overly conservative. If the true distribution comes from a smaller family of

possible distributions, the scope for robustness problems will be smaller too.

Which possible underlying distributions of achievement seem reasonable?

The normal distribution stands out as a natural candidate. It has theoretical

appeal, as it emerges from an addition of many independent draws from an

arbitrary, finite distribution per the central limit theorem. If we think of

learning as an additive random process, where each day’s new learning is a

random draw to be added to the existing stock, achievement will be normal.

A second appealing distribution is the the lognormal. It has a similar rela-

tionship to the central limit theorem as the normal: if we multiply rather

than add the (positive) draws, we will end up with a lognormal distribu-

tion. We can think of learning as a process in which students start from the

same baseline, and learn at small, random rates each day, finally arriving at

their test-day achievement level. The drawing of learning rates rather than

amounts implies that we think that past and future learning is correlated on

an absolute level, so that higher achieving students are expected to acquire

more additional knowledge in the future than their peers.

There are other reasons which make the lognormal distribution appealing.

Even if learning would be additive in principle, the achievement distribution

will have right skew if high ability individuals also put more effort, time or

other resources into learning (cf. Becker 1964/1993, p. 100).

In spite of this, the test scores we use usually either have an arbitrary dis-

tribution, or an approximately normal one. Sometimes test makers actively

tweak tests to yield a normal distribution, sometimes it arises by chance.

If we think of achievement as human capital, we can estimate the distribution

of its value empirically. To do so, I use the UK National Child Development

Study (NCDS 2010). I select males that are full-time employed at age 48,

and calculate the principal component of their normalized age 11 and 16 test

scores.
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Figure 5: Average logged gross wages of 48-year old full-time employed males for differ-
ent achievement levels (circles, circle area and color is proportionate to the number of
observations) and the regression line through the unaveraged data. Data: NCDS 2010.

Figure 5 shows average logged age 48 gross wages for different achievement

intervals at age 11 and 16 (circles). There is an approximately linear rela-

tionship between test scores and logged wages, which implies an exponential

mapping from scores to wages. This is indeed the standard assumption in

the economics of education literature (cf. Lazear 2003, Hanushek 2006).

We can find the slope of the relationship by regressing wages Y on the prin-

cipal component of test scores y.

lnY = a+ by + ε

The estimated values of b can be found in the first column of Table 2. They

are moderately large at wage differences up to 0.21 logs for a one standard

deviation increase in age 16 test scores.

In column (2) I add controls for socioeconomic background to the equation

above. I arrive at an association between test scores and log wages of 0.17

for the age 11 achievement distribution and 0.18 for age 16.

Depending on what we want to condition the wage distribution on, we can

add more controls. For example, we can add age 7 scores as a proxy for

ability. The estimates of the effect of later age test scores are then reduced
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dependent variable: log wages (1) (2) (3) (4)

age 11 score 0.20 0.17 0.13 0.06

age 16 score 0.21 0.18 0.14 0.04

parental background yes yes yes
age 7 scores yes yes
highest educational attainment yes

Table 2: Eight separate estimates of the relationship between standardized test scores and
logged age 48 wages for full-time employed males in the British 1958 cohort. Data: NCDS
2010.

to 0.13 and 0.14 respectively, as can be seen from column (3). Column (4)

shows the estimates when I control for (endogenous) educational attainment

as well. This reduces the estimates to 0.06 and 0.04.

Other authors have found estimates in the range of 0.07–0.16 for specifications

similar to the first (Lazear 2003), 0.09–0.15 for specifications similar to the

second (Murnane et al. 2000), and 0.06–0.16 for the fourth (Murnane et al.

2000, Altonji and Pierret 2001, Galindo-Rueda 2003, Lazear 2003, Speakman

and Welch 2006).

In specifications (1) and (2), my estimates are a bit higher than those of the

other authors. Robustness checks show that this is because I normalize the

test scores before taking their principal components. Another difference in

my method is that I use old-age wages, and the effects of the impact of test

scores should rise with age (Altonji and Pierret 2001, Galindo-Rueda 2003,

Lange 2007). I have tried regressing age 33 wages instead, but this yields

roughly similar results in my sample.

The lognormal distribution can have different levels of skew. How skewed

would a conditional wage distribution be? We can map the standardized score

distribution y into the estimated conditional wage distribution Ŷ according

to

Ŷ = exp(â+ b̂y)

The conditional wages Ŷ will be distributed lognormally with the distribution

parameter σ equal to b̂. The larger σ, the larger the skew of the lognormal.

For low values of σ, the conditional wage distribution will look like the nor-
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normalized achievement distribution, age 16 conditional wage distribution age 48

Figure 6: The estimated wage distribution conditional on differences in achievement levels,
controlling for parental background. A one percentile in the achievement distribution (left)
is associated with a one percentile increase in the wage distribution (right). Data: NCDS
2010.

mal. The second column of Table 2 gives the largest values of b which we

still might reasonably call causal at 0.18, even though the true causal effect

is probably much smaller. The lognormal distribution we obtain by setting

σ equal to 0.18 can be seen from Figure 6.

Suppose that the true cardinal achievement distribution is given by the con-

ditional wage distribution, but that we use a normal test score distribution

for our analysis. It is possible to calculate the bias arising in OLS estimates

because of this.

To keep things simple, let us compare means between a treatment (subscript

t) and a control group (subscript 0). I will call the difference between the

two the treatment effect on the mean βµ. Suppose that the true distribution

is lognormal, and given by

Y ∼ LN(µ, σ2),

but that we measure normal data given by

y = ln(Y ) ∼ N(µ, σ2).

16



In order to catch only the effect of a change in the shape of the distribution,

and not the effect of a change in the scale, I will compare the difference of

means in the normal distribution with the difference of logged means in the

lognormal distribution. This implies that the difference will be expressed in

terms of the normalized test scores.

The estimate of the difference between the means βµ is biased by:

bias = (E[yt]− E[y0])− (ln(E[Yt])− ln(E[Y0])) .

In terms of the moments of the treatment and control distributions, this

equals

bias = (µt − µ0)−
(
µt +

1

2
σ2
t − µ0 −

1

2
σ2

0

)
=

1

2

(
σ2

0 − σ2
t

)
.

Let us define βσ as the amount by which the treatment distribution is wider

than the control distribution. Note that βσ is expressed in control group

standard deviations.

σt = (1 + βσ)σ0

Rewriting the earlier equation in terms of σ0 and βσ we then get

bias = −σ2
0

(
βσ +

1

2
β2
σ

)
.

This shows that the amount of bias generated by assuming a normal distri-

bution where the lognormal distribution is appropriate is independent of the

treatment effect on the mean, but dependent on the difference in variance

between treatment and control groups. A relatively larger variance in the

treatment group will lead to a negative bias in the estimate of the treatment

effect, and vice versa.

The dependence of qualitative robustness on the higher moments of the distri-

butions only can be generalized. Davison and Sharma (1988) show that mean

differences between two normal distributions of equal variance are indicative

of mean differences in any monotonic transformation of those distributions.
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(1) (2) (3) (4) (5)

Paper βµ βσ σ0 bias corrected βµ

Hanushek and Woessmann (2006) -0.179 0.101 0.182 -0.004 -0.175
Pekkarinen et al. (2009) -0.007 0.009 0.182 0.000 -0.007
Duflo et al. (2008) 0.175 0.042 0.182 -0.001 0.176

Table 3: Estimated treatment effects of curriculum from a number of selected papers. The
last column shows the estimated effect under the assumed lognormal distribution.

How large is the bias in practice? In many cases, variances are more or less

constant over treatment, and the bias will be close to zero in accordance

with Davison and Sharma (1988). One example where this is clearly not the

case is curriculum tracking, the separation of students into different schools or

classes based on (estimated) ability. Such stratification almost certainly leads

to larger differences between students (Pfeffer 2009, Koerselman (forthcom-

ing)). We can thus use curriculum tracking as a kind of worst-case scenario

for educational policy analysis.

I have selected three empirical papers from the literature on the subject

from which to get empirical values for βσ. Hanushek and Woessmann (2006)

compare tracking policies between countries cross-sectionally on the basis of

PISA/PIRLS and TIMSS data. Pekkarinen et al. (2009) investigate the effect

of the 1970s Finnish comprehensive school reform using panel data, while

Duflo et al. (2008) use a randomized trial in Kenya to look at the effects of

tracking. These are three quite different settings, and their respective results

are not necessarily generalizable across regions and times. It is therefore

perhaps not surprising that the three papers find significant effects on the

mean of different signs. Tracking is associated with larger differences between

students in all three papers.

The first column in Table 3 shows standardized estimated treatment effects

on the mean from these papers. The second column contains the standardized

effects on the distributions’ standard deviations. The third column contains

the parameter σ0, which determines the skew of the assumed underlying

human capital distribution. I assume the human capital distribution to have

a σ equal to 0.18.
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The fourth column contains the size of the bias, and the fifth the updated

mean treatment effect. The size of the bias is quantitatively small; far below

0.01 of a standard deviation in test scores for all three papers. This is not

enough to change the papers’ respective qualitative conclusions.

The estimate b̂ underlying the conditional wage distribution used for this

analysis is probably an overestimate of the causal relationship between test

scores and wages. In the estimate, we omit both the effect of early age

ability and of differences in later age educational attainment. Were we to

use a smaller value of b̂, the corresponding biases would be smaller in size as

well.

4 Discussion

Test scores contain little information on a higher level than the ordinal. We

can rank students, but the cardinal values attached to those ranks are essen-

tially arbitrary. The ordinality of test scores makes conclusions based on a

comparison of means sensitive to the exact method of producing those scores.

In theory, regression coefficients may even change sign when we give students

a different test, or change the mapping of raw scores into test scores.

It is a matter of opinion whether there exists an underlying cardinal concept

of ability or achievement. Human capital is however much more straightfor-

ward to interpret cardinally. Stating that “Individual A has twice as much

human capital as individual B.” is more sensible than stating that he is twice

as intelligent.

If we interpret test scores as a measure of human capital, we may impose

an assumed or estimated distributional shape of human capital on the or-

dinal scores. The better we succeed in doing so, the truer our mean-based

conclusions will be.

When scores are made to follow either a normal or a lognormal distribution of

limited skew, we can reasonably think of them approximating the underlying

human capital distribution. The difference between regression coefficients
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based on either distribution is numerically small in most cases, and the reader

may conclude that to limit oneself to the the use of ordinal methods on test

scores is overly prudent.

At other times however, test score distributions seem to have an arbitrary

shape. If we use mean-based methods on those distributions, we must ex-

plicitly consider whether the empirical distribution fits the distribution we

assume the underlying variable to have. There are cases where the test was

designed to yield normal scores in a larger population, but where we only

observe a subsample. In such cases, the scores may contain true cardinal

information. In other cases the distribution may be truly arbitrary, and it

may be a good idea to transform it into a normal or lognormal, or to use

percentile scores instead.

I advocate the use of methods such as quantile regression on test scores, at

the very least as a kind of robustness check. The bias produced by using the

wrong distribution of test scores increases in the heterogeneity of the esti-

mated effect. Those cases where mean-based analysis is the least robust will

thus also be the cases where quantile regression will give the most interesting

results, worthy of reporting in and of themselves.
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